We propose a new approach—called PK-clustering—to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4) evaluates the consensus between user-selected algorithms and 5) allows users to review details and iteratively update the acquired knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often randomly selected black-box clustering algorithms.

Integrating Prior Knowledge in Mixed-Initiative Social Network Clustering

Paolo Buono;
2021-01-01

Abstract

We propose a new approach—called PK-clustering—to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4) evaluates the consensus between user-selected algorithms and 5) allows users to review details and iteratively update the acquired knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often randomly selected black-box clustering algorithms.
File in questo prodotto:
File Dimensione Formato  
pister2020-editoriale.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pkclustering-post-print.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/310037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact