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Fig. 1. Two main phases of PK-clustering. On the left, the user has specified the Prior Knowledge (PK) groups (top left) and then
reviews the list of algorithms ranked according to how well they match the PK. On the right, the user compared the detailed results of
selected algorithms and consolidated the results. From the initial specification of three groups and three people, 4 relevant clusters
were obtained with 37 people in total, plus one unclassified node (Others group).

Abstract—We propose a new approach—called PK-clustering—to help social scientists create meaningful clusters in social networks.
Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to
choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering
approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge
of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods),
3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4)
evaluates the consensus between user-selected algorithms and 5) allows users to review details and iteratively update the acquired
knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from
social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding
being overly influenced by the results of often randomly selected black-box clustering algorithms.

Index Terms—Social network analysis, network visualization, clustering, mixed-initiative, prior knowledge, user interface

1 INTRODUCTION

The goal of this work is to help social scientists, such as historians
and sociologists, create meaningful clusters from social networks they
study. In contrast to the belief that most data is easily available on the
Web, as of today, most social scientists spend a long time collecting
data, to construct social networks, based on documents or surveys,
in order to create and carefully validate medium-sized networks (50–
500 vertices). Before the start of the cluster analysis a great deal of
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effort goes into analysing other data and gathering knowledge (which
we call prior knowledge in the rest of the paper). Social scientists
study in great details the network entities (most of the time people),
and the social ties they weave together, as it is the unit brick with
which they can make historical or social hypothesis and conclusions.
When the network is small, less than 30–50 nodes, it is possible to
remember most of the relations and persons and visualization directly
helps to show groups, hubs, disconnected entities, outliers, and other
interpretable motifs. When the network grows larger, with hundred
entities or millions of them, it becomes impossible to perform the visual
analysis only at the entity level. The graph has to be summarized, and
typically social scientists want to organize it in social communities. A
large number of algorithms are available today to compute clusters of
entities from a graph, with the assumption that the computed clusters
represent faithfully the social communities. However, most social
scientists are not familiar with all of the available algorithms and are
challenged to choose which algorithm to run, with which parameters,
and how to reconcile the computed clusters with their prior knowledge.
Furthermore, the clusters computed by the algorithms do not always
align with the concept of community from the social scientists.

Typically, social scientists select an analysis tool based on their
familiarity with the tool and the level of local or online support they
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can access. Therefore, they most often use popular systems such as
R [42], Gephi [16], Python with NetworkX [37], or Pajek [38]. To
compute clusters, they follow a strained process: they select and run
algorithms provided in the tool and then try to make sense of the
results (see Fig. 2). When they are not satisfied or unsure, they it-
eratively tweak the parameters of the algorithms at hand, run them
again and hope to get results more aligned with their prior knowl-
edge. This analysis process is unsatisfactory for three main reasons:

Fig. 2. Traditional Clustering. The
output is a clustering, usually from a
randomly chosen algorithm.

1. it forces them to try a some-
times large number of black-
box algorithms one by one,
tweaking parameters that of-
ten do not make sense to
them;

2. even when a parameter
makes sense to them, such
as the number of clusters
to compute, k in k-means
clustering, they have no clue
of what value would generate
good results, and are left
with trial and error;

3. even if they could painstak-
ingly evaluate the results of
all clustering algorithms ac-
cording to their prior knowl-
edge, no existing system al-
lows users to do so easily,
leading users to give up and blindly accept the results of one of
the first algorithms they try.

Those complaints have been heard repetitively during the decades our
team has worked with social scientists.

Moreover, clustering is an ill-defined problem: for one dataset, there
is no ground truth, and several partitions can be considered good accord-
ing to the metric chosen to evaluate the result [27]. In a Social Sciences
setting, this means, for example, that the same social network could be
clustered to find families, friend groups, or business relationships. One
partition is not better than the other: it depends on the purpose of the
analysis. This problem increases the need for interactive tools, which
lets the user specify which type of partition is expected.

To address those issues we propose a novel approach, called PK-
clustering, which allows social scientists to iteratively construct and
validate clusters using both their prior knowledge and consensus among
clustering algorithms. A prototype system illustrates such approach.

The proposed approach includes three main steps (see Fig. 3):
1. Specify Prior Knowledge (PK). Users introduce their prior knowl-

edge of the domain by defining partial clusters. The tool then runs
all available clustering algorithms.

2. Consolidate expanded PK clusters. Users review the list of al-
gorithms, ranked according to how well they match the prior
knowledge. They compare results and consensus, then accept or
ignore suggestions to expand the prior knowledge clusters

3. Consolidate extra clusters. The tool suggests extra clusters on
unassigned nodes. The user reviews consensus on each proposed
cluster, then accepts or rejects suggestions.

The output of the process is, using a direct quote from a social
scientist providing feedback on the prototype: “a clustering that is
supported by algorithms and validated, fully or partially, by social
scientists according to their prior knowledge”.

According to the need to combine data mining with visualiza-
tions [47] and inspired by the idea of letting the user collaborate with
the machine to reach specific goals [21], the proposed approach follows
a user-initiated mixed-initiative [21] visual analytics process.

In our case, users focus on the results that expand on their prior
knowledge, filter-out the most implausible results, but can readjust
when they realize that several algorithms are consensual despite not
matching the prior knowledge (hinting at other possible meaningful
structures). Our mixed-initiative approach allows social scientists to

Fig. 3. PK-clustering. The output is a clustering supported by algorithms
and validated (fully or partially) according to the user’s Prior Knowledge.

seed the clustering process with a small set of well-known entities that
will be quickly and robustly expanded into meaningful clusters (details
in Sect. 3.1).

Contrary to a current trend [36], we do not aim to improve the
interpretability of algorithms but to improve the interpretation of the
results of black-box algorithms in light of prior knowledge, provided by
the user. Every day, we use complex mechanisms that we do not fully
understand, like motorbikes, cars or electric vehicles using various
kinds of engines, shifts, and gears, but we are still able to choose
which one best fit our needs according to their external utility and not
by understanding their complex internal machinery. In addition, it is
usually more important to social scientists to find an algorithm that
provides useful results than to understand why another algorithm failed
to do so.

The main contributions of this article are:
1. a new interactive clustering approach;
2. a prototype (shown in Fig. 1) implementing PK-clustering with 11

clustering algorithms of different families applied with different
parameters configurations;

3. two case studies.

2 RELATED WORK

Our approach relies on several families of clustering methods and the
visualization and exploration of their results. We first describe a brief
overview of clustering for graphs, as well as semi-supervised methods,
then several works in the literature related to visual analytics: interactive
clustering, groups in networks and ensemble cluster visualization.

2.1 Graph Clustering
One of the main properties of social networks is their community
structure [17] that reveals group relationships between nodes, known
as communities or clusters, having higher density of edges than the rest
of the graph. Similar characteristics or roles are often shared between
nodes of the same community. In social networks, a community can
mean a lot of things like families, workgroups, or friend groups. There
is abundant and growing literature on clustering methods to find these
communities for social networks. The majority of the research is made
only on topological algorithms, i.e., algorithms which use only the
structure of the network to find clusters. [15] proposes a description



and a classification of various algorithms, such as divisive, spectral and
dynamic algorithms, or methods, such as modularity-based, statistical
inference, to cite a few. In contrast, many multidimensional clustering
algorithms use a distance function as parameter, but graph clustering
algorithms mainly rely on the structure of the graph instead.

Even if the majority of studies are based on simple graphs, real-word
phenomena are often best modeled with bipartite graphs, also known
as 2-mode networks. It is the case for social scientists, who often build
their networks from raw documents containing mentions of people. In
that case, it is more straightforward to model the persons as one set of
nodes, the documents as the other one, and linking an individual to a
document if the individual is mentioned in it. This is one of the reasons
some research is made on bipartite graph community detection [1].

Moreover, recent new approaches try to use the attributes of the
nodes [56] and the dynamic aspect of the networks [40] to find more
relevant communities. Some toolkits offer a large number of algo-
rithms; for example, the Community Discovery Library (CDLIB) [41]
implements more than 30 clustering methods with variations inspired
by 67 references.

2.2 Semi-supervised Clustering
In semi-supervised clustering the user integrates the data mining task
with additional information to improve the clustering quality in terms
of minimizing the error in assigning the cluster to each data of interest.

Semi-supervised clustering can be divided into constraint-based and
seed-based clustering. The former includes must-link (ML) and cannot-
link (CL) constraints [5, 52]. ML(x,y) indicates that given two items x
and y, they must belong to the same cluster, while CL(x,y) means that
x and y must belong to different clusters.

Seed-based clustering requires a small set of seeds to improve the
clustering quality. Several works addressing seed-based clustering
have been proposed in the literature, such as: k-means [3], Fuzzy-
CMeans [6], hierarchical clustering [7], Density-Based Clustering [31],
and graph-based clustering [52]. Shang et al. [46] use a seeding then ex-
panding scheme to discover communities in a network. Their clustering
method considers edges as documents and nodes as terms.

Swant and Prabukumar [44] review graph-based semi-supervised
learning methods in the domain of hyperspectral images. Nodes of the
graph represent items that may be labeled, while the edges are used
to specify the similarity among the items. The technique classifies
unlabelled items according to the weighted distance from the labeled
items.

2.3 Mixed-Initiative Systems and Interactive Clustering
Introduced by Horviz [21], mixed-initiative systems are “interfaces that
enable users and intelligent agents to collaborate efficiently”. Several
Visual Analytics systems are based on mixed-initiative interactions,
e.g., [11, 35, 53, 57], in particular the interactive clustering systems.

PK-Clustering is an interactive clustering system. A review by Bae
et al [2] shares our concerns: “Real-world data may contain different
plausible groupings, and a fully unsupervised clustering has no way to
establish a grouping that suits the user’s needs, because this requires
external domain knowledge.” Interactive clustering systems aim at
producing visual tools that let users interact and compare several clus-
tering results with their parameter spaces, making it easier to find a
satisfactory algorithm for a particular application. Several such systems
exist (e.g., [10, 33]) but few deal with graph data. These systems adapt
one algorithm to become interactive using some type of constraints.
Instead, our approach applies ML/CL constraints on a wide variety of
existing algorithms, providing richer algorithms and control than the
reviewed systems.

2.4 Groups in Network Visualization
To assess the quality of clusters in graphs, the clusters should be visu-
alized. A state of the art report (STAR) on the visualization of group
structures in graphs is proposed by Vehlow et al. [50]. Several strategies
exist to display group information on top of node-link diagrams. Jianu
et al. evaluated four of them: node coloring, LineSets, GMap and
BubbleSets [25]. They show that BubbleSets is the best technique for

tasks requiring group membership assessment. But, displaying group
information on a node-link diagram can reduce the accuracy by up to
25 percent when solving network tasks. Another finding is that the use
of GMap of prominent group labels improves memorability. Saket et
al. evaluated the same four strategies [43], using new tasks assessing
group-level understanding.

Holten [20] proposes edge bundling on compound graphs. He bun-
dles together adjacenct edges, making explicit group relationships at
the cost of losing the detailed relationships. A good example of manual
grouping and tagging is SandBox, which allows users to organize bits
of information and their provenance in order to conduct an analysis of
competing hypotheses [55]. A lot of work has also been done on the
visualization of categorical variable in tabular data [18, 29], which is
similar to the notion of groups in networks.

2.5 Ensemble Clustering

In the context of machine learning, an ensemble can be defined as “a
system that is constructed with a set of individual models working in
parallel whose outputs are combined with a decision fusion strategy to
produce a single answer for a given problem” [54]. Several strategies
exist for combining multiple partitions of items in a clustering set-
ting [48]. Concerning visualization research, Kumpf et al. [30] consider
ensemble visualization as a sub-field of uncertainty visualization, for
which some surveys exist [8, 34]. They describe a novel interactive
visual interface that shows the structural fluctuation of identified clus-
ters, together with the discrepancy in cluster membership for specific
instances and the incertitude in discovered trends of spatial locations.
They aim at identifying ensemble members that can be considered
similar and propose three different compact representation of cluster-
ing memberships for each member. Our system provides a consensus
based interactive strategy that takes into account user’s prior knowledge
instead of relying on mathematically defined optimal assignments only.

2.6 Summary

The community detection problem in graphs has been studied in a lot of
different settings. We can classify it this way from the user perspective:
Standard clustering. One algorithm is picked with a set of parameters
and the user check if the results are consistent with his prior knowledge,
which is not represented in the process.
Ensemble clustering. Many algorithms run with potentially many pa-
rameters, and a final partition is obtained by trying to merge optimally
the partitions. At the end of the process, one clustering is given to
the user who has to check if it is consistent with the prior knowledge,
which is not used either.
Semi-supervised clustering. The user provides the prior knowledge
and lets the algorithm propose a final solution using this information in
its computation. The results should be good by design, regarding the
knowledge of the user.

The aim of our proposed framework is to combine these three ap-
proaches, to integrate the user in the analysis loop and allow him to
have a better impact on the final community detection result.

3 PK-CLUSTERING

We present a new approach, inspired by the three types of clustering
methods described in Sect. 2.6: Standard clustering, Ensemble clus-
tering and Semi-supervised clustering. It runs a set of algorithms,
then highlights those that best match the prior knowledge provided by
the domain expert. The user then reviews and compares the results
of the selected algorithms, in order to consolidate a satisfactory and
consensual partition.

PK-clustering is not tied to any specific graph representation tech-
nique and could be used to augment any of them. Our prototype is
implemented in the PAOHVis tool [49] which illustrates how users
can view their networks as PAOH (Parallel Aggregated Ordered Hyper-
graph) or traditional Node Link diagrams. PK-clustering relies heavily
on having a list of nodes, so the PAOH representation is naturally
adapted to PK-clustering, and will be used in all the figures.



After a general overview of the process, we describe each step in
more details, illustrated with screen samples taken during the analysis
of a small fictitious network.

3.1 Overview

In PK-clustering the user and the system take turn to construct and
validate clusters. The process involves three main steps, each with
several activities (see Fig. 3. The blue boxes describe the user activities
while the yellow boxes describe the system activities.) After loading
the dataset, the process is as follows:
(1) Specify Prior Knowledge (PK).
1. The domain experts interactively specify the PK by defining groups,

i.e., naming groups and assigning entities to them. Typically, an
expert would assign a few items (1-3) to a few groups (2-5), thus
creating a set of partial clusters.

2. All available clustering algorithms are run. Algorithm parameters
(e.g., number of clusters) may also be varied manually or automati-
cally using a grid search or a more sophisticated strategy, resulting
in additional results. Depending on the type of algorithm, topology
and/or data attributes are used. The specified PK is used by the
semi-supervised algorithms, which are the only ones able to use it.

(2) Consolidate expanded PK clusters.
3. Users review the ranked list of algorithms. They can see if the

algorithm results match the PK completely, partially or not at
all. Information about the number of clusters generated by each
algorithm is also provided. Users select the set of N algorithms
they think are the most appropriate.

4. The consensus between the selected algorithms is computed and
visualized next to the graph visualization (in the PAOHVis display
in our prototype)

5. Users review and compare the suggestions made by the algorithms
to expand the PK-groups into larger clusters and examine consensus
between algorithms.

6. Users accept, ignore, or change the cluster assignments. This
consolidation phase is crucial, as users take into account their
knowledge of the data, the graph visualization, and the results of
the clustering algorithms to make their choices.

(3) Consolidate extra clusters.
7. The system proposes extra clusters using nodes that have not being

consolidated yet and remain unassigned. Users can select any
algorithm and see the extra clusters it suggests.

8. For each proposed cluster, users can see if other algorithms have
found similar clusters, and then consolidate again by accepting,
ignoring, or changing the suggestions for all the nodes in the pro-
posed cluster. This step is repeated with other clusters until the user
is satisfied.

/devAt any point users can go back, select different algorithms, or
even change the PK specification to add new partial clusters. Users
can also opt not to specify any PK partial clusters at all, and accept all
consensual suggestions without reviewing them in details. This gives
users control over how much they want to be involved in the process.
Similarly, users are not required to assign every single node to a cluster.

Fig. 4. Prior Knowledge spec-
ification, the user defined
two groups composed of two
members.

By specifying the PK in the first
phase, before running the algorithms,
users avoid being influenced by the first
clustering results they encounter. The
process leads to algorithms whose re-
sults match the PK, but it also allows
to review results that contradict it.

We believe that PK-clustering ad-
dresses the important problems iden-
tified in the introduction: it helps users
decide which algorithm(s) to use, facil-
itates the review of the results taking
into consideration both the consensus
between algorithms and the knowledge
users have of their data. We will now review each step in more details.

3.2 Specification of Prior Knowledge

We ask users to represent prior knowledge as a set of groups. Each
group contains the node(s) that the expert is confident belong to the
defined group. In the case of Fig. 4, each of the two prior knowledge
groups contains two nodes, and it specifies that the user is expecting to
see at least two clusters, with the first two people in a blue cluster A,
and the other two in a red cluster B. This representation expresses must-
link and cannot-link constraints described in Sect. 2.2 in a simple visual
and compact form. It is not required to specify all binary constraints
because the information is derived from the prior knowledge groups.

3.3 Running the Clustering Algorithms

Our prototype includes 11 algorithms taken from three families:
Attribute based algorithms. Graph nodes can have intrinsic or com-
puted attributes that can be used for grouping, such as gender, family
name and age. Some community detection algorithms use those at-
tributes alone or together with the topology to partition the graph. A
clustering algorithm considers attributes according to their type. For cat-
egorical attributes (e.g., male / female) it finds matching attributes and
merges them if necessary. For numerical attributes (e.g., income) the
algorithm seeks to define intervals which can be adjusted for propagat-
ing clusters. Algorithms in this family can also use multiple attributes
together.
Topology based algorithms. Most of the clustering algorithms con-
sider only the graph topology [4] and try to optimize a topological
measure such as modularity [9]. Those algorithms only use the connec-
tions between the people to find groups. Their aim is to find groups of
nodes such that the density of edges is higher between the nodes of one
group than between the group and the rest of the graph.
Propagation / Learning based algorithms. Semi-supervised ma-
chine learning algorithms learn from an incomplete labeling of data
and use it to classify the rest of the data. They represent a class of
machine learning methods, also called label propagation methods,
which can take into account users’ Prior Knowledge groups in its
clusters computation. By design, this type of algorithms will always
provide a perfect match with the Prior Knowledge, even if the Prior
Knowledge makes no sense.

Our prototype implements 2 attribute based algorithms (one for nu-
merical attributes and the other for categorical attributes), 7 topology
based algorithms and 2 propagation based. Since we often deal with
hypergraphs 2 of the topology-based algorithms are bipartite node clus-
tering algorithms: Spectral-co-Clustering [12] and Bipartite Modularity
Optimisation. Since the majority of community detection algorithms
are for unipartite graphs, we perform a projection into a one-mode
network [58]. Basically, each pair of nodes which are in the same
hyperedge are connected together in the resulting graph, with a weight
being the number of shared hyperedges [19].

Some algorithms require parameters to be specified. We do not force
the user to specify values for all the parameters, when possible, we infer
them from the PK-groups. For instance, instead of using an arbitrary
default for the number of expected clusters k in k-means clustering,
we run the algorithm several times with a value of k from the num-
ber of specified PK-groups to this number plus two. Therefore, our
implementation computes a total of 15 clustering algorithms (11+4).
The strategy of using several parameter combinations for the same
algorithm is often used in ensemble clustering to increase the number
of different clusterings. However, the number of parameter combina-
tions can be extremely high. The research field of visual parameter
space exploration (see e.g., [45]) is devoted to exploring this space of
parameter values in a sensible way; we currently address the problem
only for simple cases.

Once all the algorithms finish the computation, we try to match
the resulting partitions with the PK and rank the algorithms by how
interesting their results are likely to be for the user.

3.4 Matching Clustering Results and Prior Knowledge

Once a clustering is computed, we want to know how well it is compat-
ible to the PK, and if possible, match every PK-group with a specific



cluster. We use the edit distance to measure this matching, as its com-
putation allows us to directly link each PK-group to a specific cluster.
Given two partitions, the edit distance is the number of single transitions
to transform the first partition into the second one. For example, the edit
distance between the two partitions of 4 nodes P1 = {{1,2,3},{4}}
and P2 = {{1,2},{3,4}} is 1 because moving the node 3 from the first
to the second set of P1 would transform it into P2. A clustering can be
seen as a partition since every node has a label, but the PK can only
be seen as a partial partition because only some nodes are labeled. We
say that the edit distance between the PK and a clustering is 0 if every
group of the PK is a subset of an exclusive cluster, i.e., if every person
of a PK-group is retrieved in the same cluster, with no overlaps. Thus,
we define the edit distance as the number of node transitions between
the groups of the PK to get to the state where each group is a subset of
an exclusive cluster.

To compute the edit distance and the matching, we build a bipartite
graph: each meta-node corresponds either to a PK-group, or a cluster.
We then link them if they share a node, with a weight equals to the
number of shared nodes. Computing the edit distance and producing a
matching between the PK-groups and the clusters is then equivalent to
the assignment problem, where the goal is to find a maximum-weight
matching in the graph. [28].

Once this matching is computed, the total sum of the weights minus
the sum of the weight of the matching is equivalent to the number of
transitions needed to transform the first partition into the second one
(or the PK into a sub-partition where each set is an exclusive subset of
the sets of the second partition), i.e., the edit distance.

Fig. 5. Red edges represent the
prior knowledge matching

For example, given a cluster-
ing of 12 nodes N = 1,2, . . . ,12,
the clusters C1 = [1,2,3,4],
C2 = [7,9,10,12] and C3 =
[5,6,8,11] and a PK com-
posed of 3 groups PK1 = [1,2],
PK2 = [5] and PK3 = [3,7], the
maximum-weight matching is
given by the edges (PK1,C1),
(PK2,C3) and (PK3,C2). This
is illustrated in Fig. 5. The
edges of the matching corre-
spond to the matching between the PK-groups and the clusters. The
edit distance is then equal to the sum of all the weights of the bipartite
graph minus the sum of the weights of the maximum matching (in red),
thus equaling 5−4 = 1. In other words, we only have to move the node
3 from PK3 to PK1, for every PK-group to be a subset of an unique
cluster, with no overlap.

In the end, we hope to find matches linking every PK-group to one
specific cluster, with no overlaps. This is not always the case and
sometimes two or more PK-groups are subsets of the same cluster. In
that case, it is not possible to link all these PK-groups to the same
cluster since we want one unique cluster for each group. Thus, we say
that the algorithm failed to match the prior knowledge and we do not
summarize it visually.

3.5 Ranking the Algorithms
The algorithms are ranked by their degree of matching with the prior
knowledge, using the edit distance. We also introduce a parsimony
criterion if there is a tie between two or more algorithms. The algo-
rithm with the smaller number of other clusters will be shown first, as
the results are easier to interpret. Moreover, the number of specified
prior knowledge groups is expected to be close to the final number of
clusters the user wants to retrieve, as social scientists often have a good
knowledge of their data.

To complement the parsimony rule, we also consider that the family
of propagation/learning based clustering algorithms is more complex
than the two previous families (attribute or topological based clustering),
in the sense that they are more difficult to explain. If a simple and a
complex algorithm match the prior knowledge, the simpler one is
presented first. For example, if grouping by the attribute “profession”
provides a perfect match, then it is ranked higher than a propagation

based method achieving the same perfect match.
Semi-supervised methods will always provide a perfect match by

definition. But if all the other algorithms (topological and attribute
based) do not give a match, it means that the PK does not align well
with the data. This would signal the user to reconsider his PK or
provides more information in the graph.

3.6 Reviewing the Ranked List of Algorithms
Once the clustering algorithms have been matched with the PK, users
can review the list of algorithms, ranked by how well their results
match the PK. Fig. 6 shows two modalities to visualize the ranked
list (individual nodes, and aggregate representation). We will describe
in details the first modality, which shows individual nodes as small
colored circles (also used on the left of Fig. 1):

Fig. 6. Two different modalities for
the ranked list of algorithms. Top:
persons are shown as circles. Bot-
tom: aggregated view. Colors indi-
cate the matching group. Gray in-
dicates no match. White indicates
extra nodes or clusters.

Each row is an algorithm, and
the algorithms are grouped by
family. On the right of the
name of the algorithm we can
see a representation of the clus-
ters that best match each of the
PK-groups. In Fig. 6 we first see
the cluster which best matches
the blue PK-group, and then the
cluster which best matches the
red PK-group. In each cluster
we see colored dots for each per-
son that matches, and dark gray
dots with a X for no match. Ad-
ditional nodes in the cluster are
represented as white dots with a
number next to it. On the right
most we see how many other
clusters (if any) have been found
by the algorithm - also repre-
sented as white dots with a number next to it.

So for example, the second algorithm fluid k3 has a blue cluster that
matches the blue PK-group plus 1 extra node, a red cluster that matches
the red PK-group plus 5 nodes, and one extra cluster. We see that the
top four algorithms match the PK perfectly, while the next one fluid k4
have a partial match. At the bottom, an algorithm has no match.

The alternate modality of representing the matches (shown at the
bottom of Fig. 6) uses bars to aggregate the nodes and show the propor-
tion of matching, non-matching and other nodes in each cluster . This
is more useful when dealing with bigger graphs, because it allows the
user to see the results in a more compact way.

Once users have reviewed the list of algorithms they can review
results of a single algorithm, or review and compare the results of all
the selected algorithms. By default only the top algorithms are selected
for inspection, but users can select any set of algorithms according to
different criterion: the degree of matching (i.e., they can choose to look
at algorithms with no match to challenge their prior knowledge); the
algorithm type (the user may prefer an attribute-based algorithm, rather
than one based on topology); the size of the matched clusters; or the
number and size of other clusters found by the algorithm.

PK-Clustering expresses its prior knowledge through must-link and
cannot-link constraints. However, at this stage, the user can decide
to use this expressive power as strong constraints—only selecting al-
gorithms that match all of them—or as weak constraints—to explore
clustering results that support most or some of them. Our historian
colleagues have used both, either to cluster a well-understood dataset
with strong constraints or to generate hypotheses on less known ones.

3.7 Reviewing and Consolidating Final Results
To consolidate the final results several approaches are possible. Apply-
ing mixed-initiative principles users can rapidly accept labels from a
specific algorithm (which is particularly useful for large datasets), or
review consensus between selected algorithms then accept only con-
sensual suggestions, or dig in manually to review labels one by one,



override labels when appropriate, or leave certain nodes unlabeled. The
tool generally guides users to first focus on the PK clusters, then other
clusters. The notion of prior knowledge can evolve during the explo-
ration and the process can be iterated from the beginning when new
knowledge is gained, thus giving new algorithm matches. Therefore,
the approach is not linear but can be iterative.

3.7.1 Reviewing Results of a Single Algorithm
By clicking on an algorithm name the results of that algorithm are
displayed in the PAOHVis view (see Fig. 7). In this view, each line
corresponds to a person in the graph, and each vertical line represents
an hyperedge connecting them [49], in a way visually similar to the
UpSet representation [32] but semantically different. Alternative graph
representations are available as well—such as node link diagrams—but
the PAOHVis view is well adapted to PK-Clustering.

Names are grouped by the proposed clusters. Clusters that match the
prior knowledge are at the top, colored by their respective colors. Black
borders around labels highlight nodes that belong to the PK, making
them easy to find. All the other (non PK) clusters are initially regrouped
in a single group labeled Others. A click on the Others label expands
the group into the additional clusters defined by the selected algorithm.
Users can rename the clusters, and change which algorithm is used for
grouping and coloring the nodes.

3.7.2 Comparing Multiple Algorithm Results
From the ranked list of algorithms users can select a set of algorithms
and click the large green button to review and compare the selected
algorithms in the PAOHVis view (see Fig. 7 and also Fig. 1 for overall
context). By default, the PAOHVis view groups the names using the
clusters of the 1st algorithm, but on the left of the node names now
appears complementary information about the results of all the selected
algorithms.

On the far left, the consensus distribution appears as a horizontal
stacked bar chart. The size of bar segments corresponds to the number
of algorithms that associate the specific node to the cluster having the
same color. On the right of the stacked bar chart, first appears the prior
knowledge (with square icons). Icons and names of PK nodes have a
black border. Further right are shown the individual algorithms’ results,
represented by diamonds, one for each node and algorithm. When
the node is classified in one of the clusters matching a PK-group the
diamond is colored with the color of that group.

For each node, the horizontal pattern of colored diamonds quickly
tell users if there is agreement among the algorithms. If all algorithms
agree the line of diamonds is of a single color. Conversely, if they
disagree diamonds will vary in color. If a node does not match any
PK-group then no icon is displayed in this phase.

In Fig. 7 PK louvain is selected as the base algorithm for the group-
ing of names in the list. We see that there is very good consensus on the
red cluster, but in the blue cluster only 4 out of 7 algorithms see Joseph
as belonging to it. Others see him as belonging to the red cluster. In
Others, 4 algorithms consistently disagree by assigning 3 more nodes to
the blue cluster. There are clearly many ways to cluster data, and users
must decide the more meaningful one, based on their deep knowledge
of the people in the network before validating clusters, possibly by
re-reading source documents or gathering more.

3.7.3 Consolidating the prior knowledge clusters
Next, using their knowledge and the consensus of the algorithms, users
validate clusters that expand the prior knowledge groups. We call
the validated data consolidated knowledge. It is kept in an additional
column on the right of the algorithms, left of the names. The tool
provides several ways to consolidate knowledge and keeps track of the
decisions:
Partial Copy. By clicking on one of the icons or dragging the cursor
down on a set of icons, users validate the suggestion(s) of an algorithm,
adding colored squares in the consolidation column. Once this valida-
tion is done, the squares do not change color anymore and represent
the user’s final decision (unless changed manually again). Fig. 8 shows
how a user drag-selects a set of diamonds in the column PK fluid k4.

Fig. 7. Reviewing and comparing results of multiple algorithms. One
algorithm is selected to order the names and group them, but icons show
how other algorithms cluster the nodes differently, summarized in the
consensus bar on the left.

Fig. 8. The user quickly drags on consecutive icons (in yellow) represent-
ing the suggestions made by one algorithm to validate node clustering.
Once the cursor is released the validated nodes appear as squares icons
in the Consolidated Knowledge column.

They are connected by a yellow line, which appears while dragging
over the icons. When done the status of the nodes in the Consolidated
Knowledge column (rightmost) will change to square.
Consensus slider. Users can set the consensus slider to a certain value
(for example 4) to automatically select all nodes that have been clas-
sified in the same cluster by at least 4 algorithms. While the slider is
being manipulated circles appear in the consolidated column. Then
users can validate the suggestions by clicking or dragging on the circles,
or by using the consolidate suggestions button which will validate all
suggestions at once. This button is shown in Fig. 1. In summary,
diamonds represent suggestions from one algorithm, circles temporary
choices, and squares represents the knowledge validated by the user.
Direct tagging. At any time, users can manually overwrite the as-
sociation of a node to a cluster by right clicking on the node in the
consolidated knowledge column and selecting an cluster from a menu.
When no clear decision can be made users can leave nodes unassigned,
and no shape is displayed in the consolidated knowledge column.

3.7.4 Consolidating extra clusters

The last step of PK-clustering aims to find new clusters for the nodes
that have not been validated yet, based on the consensus of the selected
algorithms. The suggestions are made from the point of view of one
clustering algorithm that the user can change along the process. First,
the user selects one algorithm in the PAOHVis view and the nodes are
grouped by the clusters found by the algorithm. iThe PK-clusters are
displayed at the top, followed by Others, which contains everyone else.
When users click on Others, the other clusters are displayed ordered by
consensus. Since the number of clusters can be high, all new clusters
appear in gray to avoid the rainbow effect. A secondary matching pro-
cess matches the clusters of the current algorithm with those of all the
other algorithms, one by one (similar to the matching process described
in Sect. 3.4) . Once the matching is done, the consensus of one cluster
is computed as the sum of the cardinalities of the intersections between



Fig. 9. Suggestion of extra clusters. The two PK-groups (red and blue)
are validated (nodes in the consensus column are all squared). One extra
clusters is proposed by the Louvain algorithm, labeled as 2. Hovering
over the cluster 2, the consensus is displayed by the green diamonds.
This feedback is also visible in the graph.

Fig. 10. The dataset has been fully consolidated. The persons are
grouped and colored by the consolidated knowledge. The user decided
to assign Claude, Guillaume, Madeleine and Renexent to cluster C, by
taking into account the graph and the consensus of the algorithms.

the cluster and all the other clusters of the other algorithms matched
with it, divided by the number of nodes of the cluster.

When users hover over one cluster name, a new color is given to
that cluster (e.g., green) and new (green) diamonds appear for each
algorithm that match the cluster and for each node that is assigned to
the cluster (Fig. 9). Users can therefore see if the selected cluster is
consensual, and with which algorithms. The top part of Fig. 9 shows
the mouse pointer before hovering on the cluster 2. The bottom part
shows that hovering the mouse pointer over the cluster 2, it changes to
green and several green diamonds appear along three columns.

The evaluation of the best cluster for a node can be done using
multiple encodings. The suggested clusters appear into the consensus
bar chart, in the set of algorithm output and when hovering over the
node. A click on the color will validate the node into the cluster having
that color. If users are satisfied with the association proposed by the
current algorithm, they can validate it by clicking on the cluster name.
This will create a new group, so the user can classify the nodes into
this new group, as seen before (Sect. 3.7.3): using the consensus slider,
copying an algorithm result, or through manual labeling. This process
is repeated for the other clusters until there are no unlabeled nodes or
the user is satisfied with the partial clustering. An example of a fully
consolidated dataset is shown in Fig. 10.

3.8 Wrapping up and Reporting Results

At any stage of the process, the user can finish instantaneously, either
by not labeling undecided nodes, or selecting and validating the results
of a single algorithm—as traditional approaches do, or by using a

specified threshold of consensus and not labeling the remaining entities.
The appropriateness of the choice is up to the user and should be
documented in the publication.

In addition to the consolidated clustering, the output of PK-clustering
consists of provenance information in the form of a table and a summary
report. The table provides, for each vertex, the consolidated label,
along with the labels produced by all the selected algorithms, and a
description of the interaction that has led to the consolidation, such as
“selected from algorithm x”, “consensus >= 5”, or “override” when
manually selected by the user instead of selected from an algorithm.
The summary provides counts of how many nodes were labeled using
the different interactions methods and can be used in a publication.
Examples are provided in the Supplemental Materials (as Fig. 2 and
Fig. 5).

Clustering results can thus be reviewed in a more transparent manner,
revealing the decisions taken. In contrast, traditional reporting in the
Humanities rarely questions or discusses how choices were made and
merely mentions the algorithm and parameters used.

4 CASE STUDIES

We describe two case studies using realistic scenarios where the clus-
tering has no ground truth solution but has consequences, scientific or
practical. We also report on the feedback received from practitioners.

4.1 Marie Boucher Social Network

We asked our historian colleague her prior knowledge on her network
about the trades of Marie Boucher [13], composed of two main families:
Antheaume and Boucher. Family ties were important for merchants,
but could not scale above a certain level. Marie Boucher expanded
her trade network far beyond that limit. She then had to connect to
bankers, investors, and foreign traders, far outside her family and yet
connected to it indirectly. As hinted in her article, Dufournaud believes
that the network can be split in three clusters: one related to the Boucher
family, one to the Antheaume family, and the third to the Boucher &
Antheaume company. Using standard visualization tools, she could see
different connection patterns over time, but she wanted to validate her
hypothesis using more formal measures and computational methods.

So she specified her hypotheses as Prior Knowledge and started the
analysis. Fig. 1 (top left) shows the three PK groups: Marie Boucher
for the Boucher family, Hubert Antheaume for the Antheaume family,
and the Boucher & Antheaume corporation alone for the company.

After running the algorithms, 9 algorithms produced a perfect match
out of the 13 executed (see Fig. 1 - left.) with the first algorithm listed an
attribute based algorithm that uses the time attribute in its computation.
That summary alone was found very interesting because the 3 clusters
seemed very consensual among all the 9 algorithms, and furthermore,
they appeared explainable by time alone..

In the PAOH view, she started by consolidating the 3 PK-groups
using the amount of consensus among the algorithms as well as the
graph representation and her own knowledge of the persons. At the
end of this step, the Boucher, Antheaume, and Boucher & Antheaume
groups were consolidated, but there were still several persons not la-
beled on the consolidated knowledge. She decided to review in more
detail the clustering results using the ilouvain time algorithm because
of its reliance on the time attribute, and also because its results seemed
good in the matching view. After clicking on the virtual group Others,
the four other clusters computed by ilouvain time appeared and were
reviewed by hovering the mouse on the names of these new groups. She
selected only one clusters she was comfident about and consolidated it.

The final validated partition of the dataset is represented in Fig. 1
(right). The persons are colored and grouped by the consolidated
knowledge. We can see that the final grouping makes sense in the
PAOH visualization on the right. Only one person is not part of any
group: Jacques Souchay. It is not unusual in historical sources to have
persons mentioned without any information on them.

Our historian colleague can now publish a follow-up article validat-
ing her hypotheses. The summary report will help document where the
final grouping came from, increasing trust with regard to her claims.



Fig. 11. Computing the Lineages of VAST authors: Prior Knowledge
from Alice and results of the clusterings matching it.

4.2 Lineages at VAST
In the second cases study we took the role of Alice, a VAST Steering
Committee (SC) member, who participates in a SC meeting to vali-
date the Program Committee proposed by the VAST paper chairs for
the next conference. One of the many problems that all conference
organizers face is to balance the members of the Program Committee
according to several criteria. The InfoVis Steering Committee Policies
FAQ states that the composition of the Program Committee should
consider explicitly how to achieve an appropriate and diverse mix [22]
of: • academic lineages • research topics • job (academia, industry) • ge-
ography (in rough proportion to the research activity in major regions)
• gender. Most of these criteria are well understood, except academic
lineage which is not clearly defined. Alice will use the “Visualization
Publications Data” (VisPubData [23]) to find-out if she can objectify
this concept of lineage to check the diversity of the proposed Program
Committee accordingly.

Using PK-clustering, Alice loads the VisPubData, filtered to only
contain articles from the VAST conference, between 2009–2018. Only
prolific authors can be members of the program committee, but highly
filtering the co-authorship network would change its structure and
disconnect it. Thus, she will use the unfiltered network of 1383 authors
to run the algorithms and perform the matching (Step 1 of the process),
even if at the end only 113 authors with more than 4 articles will be
need to consolidated (Steps 2 and 3).

Alice starts the PK-clustering process by entering her prior knowl-
edge, which is partial and based on two strategies: her knowledge of
some areas of VAST, and the name of well-known researchers who
have developed their own lineage. She runs the algorithms (Fig. 11) and
5 algorithms produce a perfect match, acknowledging her knowledge
of some areas of VAST. She then shows the results to other members
of the SC who will help her consolidate the lineage clusters.

Her initial PK clusters are quickly consolidated, using Internet search
to validate some less known authors. She then decides to create as many
additional clusters and lineage groups as she can. For some authors, she
decides to override the consensus of the algorithms. For example, she
decides, and her colleagues agree, that Gennady and Natalia Andrienko
should be in their own lineage group and not in D. Keim’s (Fig. 12).
The history of VAST in Europe, very much centered around D. Keim
and the VisMaster project [51], has strongly influenced the network
structure and some external knowledge is required to untangle it.

Using the PK louvain algorithm as starting point, Alice creates new
groups and achieves a consensus among the experts on a plausible set
of lineages for VAST. She then checks with the list proposed by the
program committee by entering it in on a spreadsheet with the names
and affiliations. She adds the groups and their color, and sort the list by
group. Alice can now report her work to the whole SC, which can check
the balance of lineages according to this analysis, and decide if some
lineage groups are over or under represented. By keeping the affiliations
in the list, the SC can also check the balance of affiliations that is not
always aligned with the lineages. The final results are available in the
supplemental material of the article.

Using partitioning clustering (although with outliers) forces the
algorithms or experts to make strong decisions related to lineages. But
using a soft clustering (or overlapping partitions), while providing a
more nuanced view of lineages, would not be as simple to interpret

Fig. 12. Four consolidated groups in the VAST dataset: C North, RVAC,
Andrienko and London

as coloring spreadsheet lines and sorting them; in the end, the final
selection only uses the lineage criterion among many others. Still, we
believe PK-clustering can provide a partial but concrete answer to the
problem of defining what the scientific lineages are.

4.3 Feedback from practitioners

Although we could not conduct face to face meetings with historians
and sociologists due to the COVID19 lockdown, we showed the system
to three practitioners and asked their feedback through videoconferenc-
ing systems, sharing video demonstrations and sharing our screen.

They all acknowledged the pitfalls of existing systems providing
clustering algorithms as black boxes with strange names and mysterious
parameters. They also agreed that the current process for clustering
a social network was cumbersome when they wanted to validate the
groups and compare the results of different algorithms. None of the
popular and usable systems provide easy ways to compare the results
of the clusterings. Usually, the analyst needs to try a few algorithms,
remembering the groups that seemed good in some of the algorithms,
sometimes printing the clustered networks to keep track of the different
options. Still, they all confirmed that they usually stop after trying
2 to 3 algorithms because of lack of time and support from the tools.
Evaluation of clusterings is long and tedious.

They were intrigued by the idea of entering the prior knowledge
to the system, but acknowledged that it was easy to understand and
natural for them to think in terms of well-known entities belonging
to groups. They felt uneasy thinking that this prior knowledge could
bias the results of the clustering and of the analysis. However, after a
short discussion, they also agreed that the traditional process of picking
in a more or less informed way two or three algorithms to perform a
clustering was also probably priming them and adding other biases.
Still, they said that they would need to explain the process clearly in
their publications and that some reviewers could also stress the risks.

They all agreed that the process was clear and made sense, but they
also felt it was complicated and that they would need time to master it.
They said that it was more complicated than pressing a button, but that
the extra work was worth it.

One historian who spends a lot of time analyzing her social networks
and finding information about all the people was shocked by the idea
that you could want to use an algorithm that did not match fully the
prior knowledge. For us, it matters if the prior knowledge is given
as constraints or preferences, but we did not want to introduce these
notions in the user interface so analysts are free to interpret the prior
knowledge as one or the other.

They also identified some issues with the prototype. It was not
managing disconnected networks at all when we showed the demo,
and they stressed the fact that real networks always have disconnected
components. They were also asking about structural transformations,
such as filtering by attribute or by node type. We chose not support



these functions at this stage, but they can be done through other standard
network systems.

They were also interested in getting explanations about the algo-
rithms, why some would pick the right groups and others would not.
Our system is not meant to provide explanations and works with black
box algorithms. We wished we could help them but that would be
another project. Still, when an attribute-based algorithm matches the
prior knowledge, we believe that attribute-based explanations are more
understandable, e.g., groups based on time, or income.

The table and summary report was added after those sessions so
no feedback was gathered. We will continue to collaborate with those
practitioners and help them test PK-culstering during their next social
network analysis project.

5 DISCUSSION

As presented in Sect. 2.6, the existing approaches to create clusters in
social networks consider three options: standard clustering, ensemble
clustering, and semi-supervised clustering. Our proposed PK-clustering
approach combines aspects of the three options in order to give more
control to users in the analysis loop, and allow them to have more say
in the final results.

Proponents of automatic methods may argue that PK-clustering
gives users too much influence on the final result as they can change
the cluster assignments at will. On the other hand we know that social
scientists are rarely satisfied with current clustering methods, in part
because they run on graph data that rarely represent all the knowledge
they have of the social network, so providing user control to correct
mistakes is critical.

Traditional methods push users to believe the results of the first al-
gorithms and parameter selection they try (typically chosen randomly).
Using PK-Clustering, users can still follow blindly the results of one
algorithm but PK-clustering provides a more systematic approach. It
allows users to compare results, review consensus, think at each phase
and reflect on decisions. Instead of passively accepting what the al-
gorithms propose, users provide initial hypotheses—which limits the
chances of being primed by an algorithm, and explicitly validate the
cluster assignment of nodes, therefore performing a critical review of
the automated results, yet with fast interaction to accept many sugges-
tions at once when appropriate.

This new approach allows users to discover alternative views. For ex-
ample when algorithms do not match the PK, it is an indication that the
PK is being challenged and may not be correct. Users actively partici-
pate in the process of assigning, a requirement for social scientists. The
report produced at the end of the analysis adds transparency by record-
ing where the results come from for each node so decisions can be
reviewed. Ultimately social scientists remain responsible for reporting
and justifying their choices and interventions in their publication.

We acknowledge that bias issues are complex. The absence of
ground truth limits researchers’ ability to measure those biases, and no
approach solves all issues yet, but we believe that PK-clustering offers
a fresh perspective on those issues and will lead to results that are more
useful to social scientists.

5.1 Limitations
Many more clustering algorithms exist and could be added. Moreover,
expanding the exploration of parameter spaces for clustering algorithms
seems needed. Another limitation of the current prototype is that some
algorithms do not work well with disconnected components of the
graph. Unfortunately, social scientists datasets typically have many
disconnected components. This issue can be mitigated by separating
components into a set of connected components, run the algorithms
on them, and merge the results. Our prototype runs both with node-
link and PAOH representations, but it is better tuned to the PAOH
representation because of its highly readable nodes list and table format
which makes the review of consensus easier. Better coordination of
the table with node link diagrams and other network visualizations is
needed. Further case studies will help us improve the utility of the
tool as well as the provenance table and summary, which could include
annotations documenting the decision process

5.2 Performance

The performance of PK-clustering strongly depends on the clustering
algorithms. We implemented fast algorithms to have acceptable compu-
tation times. Currently a cut-off automatically removes algorithms that
have not produced a clustering after 10 seconds of computation. We ran
a benchmark of the performance on the two datasets of the case studies
with a laptop equipped with an Intel Core i7-8550U CPU 1.80GHz × 8
and 16 Gigabytes of memory. For the full Marie Boucher social net-
work described in Sect. 4.1, composed of 189 nodes and 58 hyperedges
(1000 edges after the unipartite projection) it took 0.6 seconds to run all
our implemented algorithms and produce the matching. For the graph
of Sect. 4.2 about the VisPubData of the VAST conference, made of
1383 nodes and 512 hyperedges (4554 edges after projection), one algo-
rithms (the Label Propagation algorithm) took 11.37 seconds to finish
and was abandoned because deemed too computationally expensive.
Those two datasets are representative of the many medium size datasets
historians and social scientists carefully curate (i.e., 50–500 nodes).

In order to improve the computational scalability, we will implement
progressive techniques to deal with larger sizes [14]. The current
user interface design for PK-clustering would allow the ranked list
of algorithms to be progressively updated, and users to review a few
individual algorithms first while other algorithms are still running. Of
course, visual scalability is also an issue with larger datasets, as the
list of people also grows. PAOHVis allows groups (like clusters) to
be aggregated or expanded, so we expect that users would expand
clusters one by one to review and consolidate them, while also being
able to review the connections between the proposed clusters. Users
can also use the automated features of PK-Clustering to consolidate the
nodes (e.g., selecting one algorithm based on the ranking, or using the
consensus slider to consolidate all the nodes at once). Pixel-oriented
visualizations [26] would facilitate the review of consensus for a large
number nodes and clusters. Classic techniques like zooming or fisheye
views [24, 39] would help as long as names remain readable, which is
critical to our users.

6 CONCLUSION

In this article, we introduced a new approach, called PK-clustering, to
help social scientists create meaningful clusters in social networks. It
is composed of three phases: 1) users specify the prior knowledge by
associating a subset of nodes to groups, 2) all algorithms are run and
ranked, 3) users review and compare results to consolidate the final
clusters.

This mixed-initiative approach is more complex than a traditional
clustering process where users simply press a button and get the results,
but it provides social scientists with an opportunity to correct mistakes
and infuse their deep knowledge of the people and their lifes in the
results. With simple actions such as moving a slider, or dragging
over icons, users are able to interactively perform complex tasks on
many nodes at once. The output of PK-clustering is—using a direct
quote from a social scientist providing feedback on the prototype:
“a clustering that is supported by algorithms and validated, fully or
partially, by social scientists according to their prior knowledge”. Two
case studies illustrated the benefits of PK-clustering.

Clustering and social network analysis remains a challenging task,
typically without ground truth to formally evaluate the results. The risk
of introducing bias remains always present, in this new approach as
well as in traditional methods. We believe that PK-clustering offers a
fresh perspective on the process of clustering social networks and gives
users the opportunity to report their results in a transparent manner.
The next frontier will be the analysis of dynamic social networks, that
are often used in social science, and our approach will need to take into
account the evolution of the communities over time.
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