This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, DPPH• scavenging capacity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the LC-MS/MS validated method. The accumulation of phenolic acids derivatives highlighted the microbial metabolism during AP fermentation. Bio-converted phenolics were likely responsible for the increased DPPH• scavenging capacity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells, and preserved the integrity of tight junctions.

Biotechnological re-cycling of apple by-products: a reservoir model to produce a dietary supplement fortified with biogenic phenolic compounds

Filannino, Pasquale;
2021-01-01

Abstract

This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, DPPH• scavenging capacity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the LC-MS/MS validated method. The accumulation of phenolic acids derivatives highlighted the microbial metabolism during AP fermentation. Bio-converted phenolics were likely responsible for the increased DPPH• scavenging capacity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells, and preserved the integrity of tight junctions.
File in questo prodotto:
File Dimensione Formato  
Re-cycling of apple by-products (Food Chemistry).pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/309645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact