In this paper, we prove the existence of nontrivial weak bounded solutions of the nonlinear elliptic problem{-div(a(x, u, del u)) + A(t)(x, u, del u) = f(x, u) in Omega, u >= 0 in Omega, u = 0 on partial derivative Omega,where Omega subset of R-N is an open bounded domain, N >= 3, and A(x, t, xi), f(x, t) are given functions, with A(t) = partial derivative A/partial derivative t, a = del xi A,To this aim, we use variational arguments which are adapted to our setting and exploit a weak version of the Cerami-Palais-Smale condition.Furthermore, if A(x, t, xi) grows fast enough with respect to t, then the nonlinear term related to f(x, t) may have also a supercritical growth.

Positive solutions for some generalized p–Laplacian type problems

Candela, Anna Maria
;
Salvatore, Addolorata
2020-01-01

Abstract

In this paper, we prove the existence of nontrivial weak bounded solutions of the nonlinear elliptic problem{-div(a(x, u, del u)) + A(t)(x, u, del u) = f(x, u) in Omega, u >= 0 in Omega, u = 0 on partial derivative Omega,where Omega subset of R-N is an open bounded domain, N >= 3, and A(x, t, xi), f(x, t) are given functions, with A(t) = partial derivative A/partial derivative t, a = del xi A,To this aim, we use variational arguments which are adapted to our setting and exploit a weak version of the Cerami-Palais-Smale condition.Furthermore, if A(x, t, xi) grows fast enough with respect to t, then the nonlinear term related to f(x, t) may have also a supercritical growth.
File in questo prodotto:
File Dimensione Formato  
[79]-DCDSS_Pucci-Reprint2020.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 356.21 kB
Formato Adobe PDF
356.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
[79]-CS_Pucci_VQR.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 426.25 kB
Formato Adobe PDF
426.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/294848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact