Clustering techniques have gained great popularity in neuroscience data analysis especially in analysing data from complex experiment paradigm where it is hard to apply traditional model-based method. However, when employing clustering analysis, many clustering algorithms are available nowadays and even with an individual clustering algorithm, choices like parameter settings and distance metrics are very likely to have impacts on the final clustering results. In our previous work, we have demonstrated the benefits of integrating clustering results from multiple clustering algorithms, which provides more stable, reproducible, and complete clustering solutions. In this paper, we aim to further inspect the possible influences from the choices of distance metrics in clustering analysis.

EXPLORATION OF DISTANCE METRICS IN CONSENSUS CLUSTERING ANALYSIS OF FMRI DATA

Brattico, E
Resources
;
2017-01-01

Abstract

Clustering techniques have gained great popularity in neuroscience data analysis especially in analysing data from complex experiment paradigm where it is hard to apply traditional model-based method. However, when employing clustering analysis, many clustering algorithms are available nowadays and even with an individual clustering algorithm, choices like parameter settings and distance metrics are very likely to have impacts on the final clustering results. In our previous work, we have demonstrated the benefits of integrating clustering results from multiple clustering algorithms, which provides more stable, reproducible, and complete clustering solutions. In this paper, we aim to further inspect the possible influences from the choices of distance metrics in clustering analysis.
2017
978-1-5386-1895-0
File in questo prodotto:
File Dimensione Formato  
Liu17inpress_Exploration of distance metrics.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 649.62 kB
Formato Adobe PDF
649.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/280205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact