We prove that if a holomorphic self-map $fcolon Omega o Omega$ of a bounded strongly convex domain $Omegasubset mathbb C^q$ with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball $mathbb B^k$. We also obtain the dual result for a holomorphic self-map $fcolon Omega o Omega$ with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of $f$ via the squeezing function.
Canonical models on strongly convex domains via the squeezing function
Amedeo Altavilla;
2020-01-01
Abstract
We prove that if a holomorphic self-map $fcolon Omega o Omega$ of a bounded strongly convex domain $Omegasubset mathbb C^q$ with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball $mathbb B^k$. We also obtain the dual result for a holomorphic self-map $fcolon Omega o Omega$ with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of $f$ via the squeezing function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2002.05399.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
390.75 kB
Formato
Adobe PDF
|
390.75 kB | Adobe PDF | Visualizza/Apri |
Altavilla-Arosio-Guerini-10.1007_s12220-020-00448-5.pdf
non disponibili
Descrizione: File online first
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
613.88 kB
Formato
Adobe PDF
|
613.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.