This work reports the preparation of propranolol according to a flow process. Propranolol has been prepared paying attention to tackle the formation of the by-product tertiary amine, resulting from an additional ring opening of the starting epoxide. Remarkably, the use of catalytic amount of water resulted beneficial for the yield and purity of the desired propranolol, and to substantially reducing the amount of tertiary amine byproduct. The high concentration of the solutions allowed for a productivity of several grams/h.
Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction
De Angelis S.;Purgatorio R.;Degennaro L.;Luisi R.
;Carlucci C.
2019-01-01
Abstract
This work reports the preparation of propranolol according to a flow process. Propranolol has been prepared paying attention to tackle the formation of the by-product tertiary amine, resulting from an additional ring opening of the starting epoxide. Remarkably, the use of catalytic amount of water resulted beneficial for the yield and purity of the desired propranolol, and to substantially reducing the amount of tertiary amine byproduct. The high concentration of the solutions allowed for a productivity of several grams/h.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JFlowChem2019.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
768.23 kB
Formato
Adobe PDF
|
768.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.