In this note, we extend a technique recently used to devise a novel class of geometric integrators named Hamil-tonian Boundary Value Methods, to cope with nonlinear fractional differential equations. The approach relies on a truncated Fourier expansion of the vector field which yields a modified problem that can be suitably handled on a computer. An example showing the convergence properties of the resulting spectral approximation method is also presented.

Spectrally accurate solutions of nonlinear fractional initial value problems

Amodio P.;Iavernaro F.
2019

Abstract

In this note, we extend a technique recently used to devise a novel class of geometric integrators named Hamil-tonian Boundary Value Methods, to cope with nonlinear fractional differential equations. The approach relies on a truncated Fourier expansion of the vector field which yields a modified problem that can be suitably handled on a computer. An example showing the convergence properties of the resulting spectral approximation method is also presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/248631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact