Bounds on the ultimate precision attainable in the estimation of a parameter in Gaussian quantum metrology are obtained when the average number of bosonic probes is fixed. We identify the optimal input probe state among generic (mixed in general) Gaussian states with a fixed average number of probe photons for the estimation of a parameter contained in a generic multimode interferometric optical circuit, namely, a passive linear circuit preserving the total number of photons. The optimal Gaussian input state is essentially a single-mode squeezed vacuum, and the ultimate precision is achieved by a homodyne measurement on the single mode. We also reveal the best strategy for the estimation when we are given L identical target circuits and are allowed to apply passive linear controls in between with an arbitrary number of ancilla modes introduced.
Optimal Gaussian metrology for generic multimode interferometric circuit
Facchi P.;
2019-01-01
Abstract
Bounds on the ultimate precision attainable in the estimation of a parameter in Gaussian quantum metrology are obtained when the average number of bosonic probes is fixed. We identify the optimal input probe state among generic (mixed in general) Gaussian states with a fixed average number of probe photons for the estimation of a parameter contained in a generic multimode interferometric optical circuit, namely, a passive linear circuit preserving the total number of photons. The optimal Gaussian input state is essentially a single-mode squeezed vacuum, and the ultimate precision is achieved by a homodyne measurement on the single mode. We also reveal the best strategy for the estimation when we are given L identical target circuits and are allowed to apply passive linear controls in between with an arbitrary number of ancilla modes introduced.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.