This chapter deals with adaptation of background information and ­advertisements, displayed in an environment, to the interests of the group of people present. According to research on computational advertising, it is important to develop methods for finding the “best match” between user interests in a given context and available advertisements. Accordingly, after providing an overview of the most popular group recommender approaches, this chapter looks at new issues that arise when considering group modeling in pervasive advertising conveyed through digital displays. The chapter first discusses general issues concerning group recommender systems, with particular emphasis on the acquisition of user preferences and interests. A system called GAIN (Group Adaptive Information and News) is then presented. This was developed with the aim of tailoring the display of background information and advertisements to groups of people.

Adapting News and Advertisements to Groups

DE CAROLIS, Berardina
2011-01-01

Abstract

This chapter deals with adaptation of background information and ­advertisements, displayed in an environment, to the interests of the group of people present. According to research on computational advertising, it is important to develop methods for finding the “best match” between user interests in a given context and available advertisements. Accordingly, after providing an overview of the most popular group recommender approaches, this chapter looks at new issues that arise when considering group modeling in pervasive advertising conveyed through digital displays. The chapter first discusses general issues concerning group recommender systems, with particular emphasis on the acquisition of user preferences and interests. A system called GAIN (Group Adaptive Information and News) is then presented. This was developed with the aim of tailoring the display of background information and advertisements to groups of people.
2011
978-0-85729-351-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/23331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact