Diatoms are unicellular photosynthetic microalgae that produce a sophisticated mesoporous biosilica shell called frustule. Easy to achieve and extract, diatom frustules represent a low-cost source of mesoporous biocompatible biosilica. In this paper, the possibility to in vivo functionalize the diatom biosilica with bisphosphonates (BPs) was investigated. In particular, two BPs were tested: the amino-containing sodium alendronate (ALE) and the amino-lacking sodium etidronate (ETI). According to first SEM-EDX analysis, the presence of the amino-moiety in ALE structure allowed a better incorporation of this BP into living diatom biosilica, compared to ETI. Then, diatom growth was deeply investigated in presence of ALE. After extraction of functionalized frustules, ALE-biosilica was further characterized by XPS and microscopy, and ALE release was evaluated by ferrochelation assay. Moreover, the bone regeneration performances of ALE-functionalized frustules were preliminarily investigated on bone osteoblast-like cells, via Comassie staining. Data are related to the research article “In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material”.

Data from in vivo functionalization of diatom mesoporous biosilica with bisphosphonates

Leone G.;Vona D.;De Giglio E.;Bonifacio M. A.;Ragni R.;Farinola G. M.;
2019-01-01

Abstract

Diatoms are unicellular photosynthetic microalgae that produce a sophisticated mesoporous biosilica shell called frustule. Easy to achieve and extract, diatom frustules represent a low-cost source of mesoporous biocompatible biosilica. In this paper, the possibility to in vivo functionalize the diatom biosilica with bisphosphonates (BPs) was investigated. In particular, two BPs were tested: the amino-containing sodium alendronate (ALE) and the amino-lacking sodium etidronate (ETI). According to first SEM-EDX analysis, the presence of the amino-moiety in ALE structure allowed a better incorporation of this BP into living diatom biosilica, compared to ETI. Then, diatom growth was deeply investigated in presence of ALE. After extraction of functionalized frustules, ALE-biosilica was further characterized by XPS and microscopy, and ALE release was evaluated by ferrochelation assay. Moreover, the bone regeneration performances of ALE-functionalized frustules were preliminarily investigated on bone osteoblast-like cells, via Comassie staining. Data are related to the research article “In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material”.
File in questo prodotto:
File Dimensione Formato  
2019_DIB alendronato.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/231859
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact