We look for homoclinic solutions q : R ! RN to the class of second order Hamiltonian systems - q'' + L(t)q = a(t)rG1(q) - b(t)rG2(q) + f(t), t 2 R, where L : R ! R^NXN and a; b : R ! R are positive bounded functions, G1;G2 : RN ! R are positive homogeneous functions and f : R ! RN. Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if f = 0 and the existence of at least three solutions if f is not trivial but small enough.
Some multiplicity results of homoclinic solutions for second order Hamiltonian systems
S. Barile;A. Salvatore
2020-01-01
Abstract
We look for homoclinic solutions q : R ! RN to the class of second order Hamiltonian systems - q'' + L(t)q = a(t)rG1(q) - b(t)rG2(q) + f(t), t 2 R, where L : R ! R^NXN and a; b : R ! R are positive bounded functions, G1;G2 : RN ! R are positive homogeneous functions and f : R ! RN. Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if f = 0 and the existence of at least three solutions if f is not trivial but small enough.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Barile Salvatore opuscula_math_4002.pdf
accesso aperto
Descrizione: Articolo di ricerca
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
485.73 kB
Formato
Adobe PDF
|
485.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.