We look for homoclinic solutions q : R ! RN to the class of second order Hamiltonian systems - q'' + L(t)q = a(t)rG1(q) - b(t)rG2(q) + f(t), t 2 R, where L : R ! R^NXN and a; b : R ! R are positive bounded functions, G1;G2 : RN ! R are positive homogeneous functions and f : R ! RN. Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if f = 0 and the existence of at least three solutions if f is not trivial but small enough.

Some multiplicity results of homoclinic solutions for second order Hamiltonian systems

S. Barile;A. Salvatore
2020-01-01

Abstract

We look for homoclinic solutions q : R ! RN to the class of second order Hamiltonian systems - q'' + L(t)q = a(t)rG1(q) - b(t)rG2(q) + f(t), t 2 R, where L : R ! R^NXN and a; b : R ! R are positive bounded functions, G1;G2 : RN ! R are positive homogeneous functions and f : R ! RN. Using variational techniques and the Pohozaev fibering method, we prove the existence of infinitely many solutions if f = 0 and the existence of at least three solutions if f is not trivial but small enough.
File in questo prodotto:
File Dimensione Formato  
Barile Salvatore opuscula_math_4002.pdf

accesso aperto

Descrizione: Articolo di ricerca
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 485.73 kB
Formato Adobe PDF
485.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/219057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact