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Abstract. We look for homoclinic solutions q : R → RN to the class of second order
Hamiltonian systems

−q̈ + L(t)q = a(t)∇G1(q)− b(t)∇G2(q) + f(t) t ∈ R,

where L : R → RN×N and a, b : R → R are positive bounded functions, G1, G2 : RN → R
are positive homogeneous functions and f : R→ RN . Using variational techniques and the
Pohozaev fibering method, we prove the existence of infinitely many solutions if f ≡ 0 and
the existence of at least three solutions if f is not trivial but small enough.
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1. INTRODUCTION

In this paper, we consider the following second order Hamiltonian system

−q̈(t) = ∇W (t, q(t)), t ∈ R, (1.1)

where q : R → RN , W ∈ C1(R × RN ,R) and ∇W (t, q) denotes the gradient of W
with respect to q ∈ RN for every t ∈ R. We look for homoclinic solutions of (1.1), i.e.,
solutions q to (1.1) such that q(t)→ 0 as |t| → +∞.

The existence of homoclinic solutions for Hamiltonian systems and their impor-
tance in the study of the behavior of dynamical systems have been recognized from
Poincaré [12]. From their existence, one may, under certain conditions, infer the
existence of chaos nearby on the bifurcation behavior of periodic orbits.
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In the last four decades, the existence and multiplicity of homoclinic solutions
for (1.1) have been widely studied via the critical points theory. If W (t, q) is periodic
in t, many authors obtained homoclinic solutions by passing to the limit of periodic
solutions of the approximating problems (see e.g., [2, 3, 13, 14, 17]). If W (t, q) is not
periodic in t, the problem is quite different because of the lack of compactness of the
Sobolev embeddings (see e.g., [4, 9, 15,16]).

Aim of this paper is to consider a non-periodic superquadratic function W (t, q)
verifying suitable conditions in order to generalize or to give complementary results
to the ones known in literature. Following an idea of Omana and Willem [9], we will
overcome the lack of compactness by taking W of a particular form in such a way
that the space in which we work is a subspace of H1(R,RN ) compactly embedded
in L2(R,RN ) (see also [15]).

More precisely, we study the problem

−q̈(t) + L(t)q(t) = a(t)∇G1(q)− b(t)∇G2(q) + f(t), t ∈ R, (1.2)

where L : R → RN×N , a, b : R → R, G1, G2 : RN → R and f : R → RN . In the
following, (·, ·) denotes the usual inner product in RN and | · | the induced norm.
Moreover, | · |µ denotes the usual norm in the Lebesgue space Lµ(R,RN ) and µ′ the
conjugate exponent to µ.

Throughout the paper we assume

(L1) L ∈ C(R,RN×N ), L(t) is a positive definite symmetric matrix for all t ∈ R
satisfying

l(t) = inf
|q|=1

(L(t)q, q)→ +∞ as |t| → +∞;

(H1) Gi ∈ C1(RN ,R), i = 1, 2, and there exist two constants µ, ν with 1 < ν ≤
max{2, ν} < µ such that

G1(sq) = |s|µG1(q) and G2(sq) = |s|νG2(q) for every (s, q) ∈ R× RN ,

that is, G1 is homogeneous of degree µ and G2 is homogeneous of degree ν;
(H2) Gi(q) > 0 for every i = 1, 2 and for every q ∈ RN with |q| = 1;
(H3) a ∈ C(R,R) is a nontrivial positive bounded function;
(H4) b ∈ C(R,R) is a positive bounded function; furthermore, b ∈ L

2
2−ν (R) if

1 < ν < 2.

If f = 0, the problem (1.2) is symmetric and we can state the following multiplicity
result.

Theorem 1.1 (Symmetric case). Let f = 0. Suppose that (L) and (H1)–(H4) hold.
Then, problem (1.2) admits infinitely many homoclinic solutions.

On the other hand, if f 6= 0, the problem loses its symmetry. Anyway, denoting by
cµ the embedding constant of H1(R,RN ) in Lµ(R,RN ), we are able to state again
a multiplicity result as follows.
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Theorem 1.2 (Nonsymmetric case). Let f ∈ Lµ
′(R,RN ). Assume that (L) and

(H1)–(H4) hold. Then, there exists a strictly positive constant δ = δ(µ, cµ, a,G1) such
that, if |f |µ′ < δ, problem (1.2) has at least three homoclinic solutions.
The following result gives an additional property for the homoclinic solutions found in
the previous theorems.
Corollary 1.3. Assume that all the hypotheses of Theorem 1.1 or Theorem 1.2 are
verified. Moreover, suppose that L(t) satisfies the additional condition
(L2) there exist a > 0 and r > 0 such that one of the following is true:

(i) L ∈ C1(R,RN×N ) and |L′(t)| ≤ a|L(t)| for any |t| ≥ r
or
(ii) L ∈ C2(R,RN×N ) and |L′′(t)| ≤ a|L(t)| for any |t| ≥ r,
where L′(t) = d

dtL(t) and L′′(t) = d2

dt2L(t).
Then, the homoclinic solutions to system (1.2) are such that q̇(t)→ 0 as |t| → +∞.

First of all, we list some properties of the homogeneous functions which are useful
in the following.
Proposition 1.4. Let G ∈ C1(RN ,R) and α > 0.
(i) G is homogeneous of degree α if and only if G is even and positively homogeneous

of degree α;
(ii) if G is positively homogeneous of degree α, then there exist mG,MG ∈ R such

that
mG|q|α ≤ G(q) ≤MG|q|α for all q ∈ RN (1.3)

with mG = min
|q|=1

G(q) and MG = max
|q|=1

G(q). Clearly, mG > 0 if G(q) > 0 for all

q ∈ RN , |q| = 1.
(iii) if G is homogeneous of degree α > 1 then ∂G

∂qi
is positively homogeneous of degree

α− 1 for all i = 1, . . . , N ; moreover, (∇G(q), q) = αG(q) for all q ∈ RN ;
(iv) if G is homogeneous of degree α > 1 and G(q) > 0 for all q ∈ RN , |q| = 1, then

there exist m∇G,M∇G > 0 such that

m∇G |q|α−1 ≤ |∇G(q)| ≤M∇G |q|α−1 for all q ∈ RN (1.4)

with m∇G = min
|q|=1

|∇G(q)| and M∇G = max
|q|=1

|∇G(q)|;

Proof.
(i) It is enough to observe that

G(−q) = G((−1)q) = | − 1|αG(q) = G(q) for every q ∈ RN .

(ii) The proof of (1.3) follows by the fact that G is continuous and strictly positive
on the compact set {q ∈ RN : |q| = 1} and

G(q) = G

(
|q| q|q|

)
= |q|αG

(
q

|q|

)
for all q ∈ RN , q 6= 0.
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(iii) For simplicity, we consider the case N = 1. If N ≥ 2, we can apply similar
arguments involving partial derivatives. It results

G′(sq) = lim
h→0

G(sq + h)−G(sq)
h

= lim
h→0

|s|α
s

G(q + h/s)−G(q)
h/s

= |s|α−2sG′(q) = sα−1G′(q)

for every q ∈ RN and s > 0. For the equality, known as Euler’s Theorem, see
e.g. [1, p. 699].

(iv) From (iii), it follows that |∇G| is positively homogeneous of degree α− 1. Hence,
(ii) implies (1.4). We remark that m∇G > 0 since, otherwise, a q ∈ RN , |q| = 1
exists such that |∇G(q)| = 0, i.e., ∇G(q) = 0. Therefore, Euler’s Theorem implies
that G(q) = 1

α (∇G(q), q) = 0, thus contradicting the hypothesis G(q) > 0 for
every q ∈ RN , |q| = 1.

From now on, according to (ii) and (iv) of Proposition 1.4, we denote by mGi , MGi ,
m∇Gi and M∇Gi the constants associated to the functions Gi and ∇Gi for i = 1, 2.
Moreover, thanks to (H3) and (H4), we can consider the real constants

ma = inf
R
a(t), mb = inf

R
b(t), Ma = sup

R
a(t), Mb = sup

R
b(t).

Clearly, it results

Ma > 0, 0 ≤ ma ≤Ma and 0 ≤ mb ≤Mb.

Remark 1.5. If b(t) 6= 0 and ν < 2 < µ, the potential V (t, q) = a(t)G1(q)− b(t)G2(q)
is a combination of a subquadratic term and a superquadratic one. Therefore, V (t, q)
does not satisfy the global Ambrosetti–Rabinowitz condition ((AR) condition):

(AR) there exists p > 2 such that 0 < pV (t, q) ≤ (∇V (t, q), q)
for every (t, q) ∈ R× RN , q 6= 0.

Indeed, fixing t ∈ R such that b(t) > 0 and q ∈ RN with |q| small enough, it is

V (t, q) ≤MaMG1 |q|µ − b(t)mG2 |q|ν = |q|ν
(
MaMG1 |q|µ−ν − b(t)mG2

)
< 0

while, choosing p = µ, from Euler’s Theorem for all q ∈ RN it is

(∇V (t, q), q)− µV (t, q)
= a(t)(∇G1(q), q)− b(t)(∇G2(q), q)− µa(t)G1(q) + µb(t)G2(q)
= (µ− ν)b(t)G2(q)
≥ mb(µ− ν)G2(q) ≥ 0.
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Remark 1.6. We point out that (AR) condition, used in all the works mentioned
above, implies that V (t, q) has a superquadratic growth as |q| → ∞. Recently, if f = 0,
there are some papers dealing with superquadratic potentials V (t, q) no verifying (AR)
condition, but satisfying a set of hypotheses different from ours (see e.g., [19] and [20]).
On the other hand, if f 6= 0, the existence of a homoclinic solution has been proved
in [7, 18] if the potential V does not verify (AR) condition. Anyway, to the best of
our knowledge, the only multiplicity result in the inhomogeneous case is contained
in [16], where the potential V (t, q) verifies (AR) condition.

Finally, we recall that a different kind of multiplicity results for periodic Hamiltonian
systems is contained in [5, 6].

The paper is organized as follows. In Section 2 we introduce the variational
formulation of the problem and we recall the Pohozaev fibering method. In Section 3
we prove Theorem 1.1 in the symmetric case and in Section 4 we show Theorem 1.2
in the non-symmetric case.

2. VARIATIONAL FRAMEWORK AND POHOZAEV FIBERING METHOD

In order to introduce the variational structure of problem (1.2), let us consider the
Hilbert space

E =
{
q ∈ H1(R,RN ) :

∫

R

(
|q̇(t)|2 + (L(t)q(t), q(t))

)
dt < +∞

}

endowed with the scalar product

(q1, q2)E =
∫

R

(
(q̇1(t), q̇2(t)) + (L(t)q1(t), q2(t))

)
dt for any q1, q2 ∈ E

and the associated norm

‖q‖E =



∫

R

(
|q̇(t)|2 + (L(t)q(t), q(t))

)
dt




1
2

for any q ∈ E.

Observe that, by (L1) the space E is continuously embedded in H1(R,RN ), hence

E ↪→ Lp(R,RN ) for any p ∈ [2,+∞).

In the following we denote by | · |p the usual norm on Lp(R,RN ) for every p ∈ [2,+∞]
and by (E′, ‖ · ‖E′) the normed dual space of E.

As ensured by Omana and Willem [9, Lemma 1] (see also Salvatore [16, Proposi-
tion 3.1]), we have

E ↪→↪→ Lp(R,RN ) for any p ∈ [2,+∞).



26 Sara Barile and Addolorata Salvatore

Now, let us consider the functional Jf : E → R defined by

Jf (q) = 1
2‖q‖

2
E −

∫

R

a(t)G1(q(t)) dt+
∫

R

b(t)G2(q(t)) dt−
∫

R

(f(t), q(t)) dt

for any q ∈ E. Under our assumptions, we get Jf is of class C1 on E with differential
J ′f : E → E′ defined as
〈
J ′f (q), h

〉
E

=
∫

R

( (
q̇(t), ḣ(t)

)
+ (L(t)q(t), h(t))

)
dt−

∫

R

a(t)(∇G1(q(t)), h(t)) dt

+
∫

R

b(t)(∇G2(q(t)), h(t)) dt−
∫

R

(f(t), h(t)) dt

= (q, h)E −
∫

R

a(t)(∇G1(q(t)), h(t)) dt+
∫

R

b(t)(∇G2(q(t)), h(t)) dt

−
∫

R

(f(t), h(t)) dt

for any q, h ∈ E. Therefore, homoclinic solutions to (1.2) can be found as critical
points of the functional Jf on E.
Remark 2.1. We note that, if L(t) satisfies only the assumption (L1), we are not
able to prove that critical points of Jf verify the property q̇ → 0 as |t| → ∞. Anyway,
this condition holds under additional assumptions on L (see Corollary 1.3).

In order to prove our results, we will use the spherical fibering method introduced
by Pohozaev ([10,11]), so for completeness we recall it in the following.

Let Y be a real Banach space and J a C1 functional on Y \ {0}. We associate
with J a functional J̃ defined on R× Y by

J̃(t, v) = J(tv) for any (t, v) ∈ R× Y .

Denoted by S the unit sphere in Y , the following result holds (see [11, Theorem 1.2.1]).
Theorem 2.2. Let Y be a real Banach space with norm differentiable on Y \ {0}
and let (t, v) ∈ (R \ {0})× S be a conditionally stationary point of the functional J̃
on R×S. Then, the vector u = tv is a non zero stationary point of the functional J , i.e.
J ′(u) = 0.

In other words, any critical point (t, v) of J̃ restricted on (R \ {0}) × S generates
the free non trivial critical point u = tv of J and vice-versa, that is, the equation

J ′(u) = 0, u 6= 0

is equivalent to the system
{
J̃ ′t(t, v) = 0,
J̃ ′v(t, v) = 0
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for ‖v‖ = 1. In the following we will call the first scalar equation of the previous
system the “bifurcation equation”.

3. PROOF OF THEOREM 1.1: SYMMETRIC CASE

In the symmetric case f = 0, by Proposition 1.4 (i) we have that the energy functional
J0 is even, where J0 : E → R is defined by

J0(q) = 1
2

∫

R

(
|q̇(t)|2 + (L(t)q(t), q(t))

)
dt−

∫

R

a(t)G1(q(t)) dt+
∫

R

b(t)G2(q(t)) dt

for any q ∈ E. According to the spherical fibering method, we look for critical points
q ∈ E of the functional J0 of the type

q = sw, where s ∈ R, w ∈ E, ‖w‖E = 1.
Thus, the functional J0 can be extended to the space R× E by setting

J̃0(s, w) = J0(sw) = s2

2 ‖w‖
2
E −

∫

R

a(t)G1(sw(t)) dt+
∫

R

b(t)G2(sw(t)) dt

= s2

2 ‖w‖
2
E − |s|µ

∫

R

a(t)G1(w(t)) dt+ |s|ν
∫

R

b(t)G2(w(t)) dt.

Plainly, the restriction of J̃0 on R× S, S = {v ∈ E : ‖v‖E = 1}, becomes

J̃0(s, w) = s2

2 − |s|
µ

∫

R

a(t)G1(w(t)) dt+ |s|ν
∫

R

b(t)G2(w(t)) dt

for any w ∈ S, therefore if s 6= 0, the bifurcation equation (J̃0)′s(s, w) = 0 takes
the form

s− µ |s|µ−2s

∫

R

a(t)G1(w(t)) dt+ ν |s|ν−2s

∫

R

b(t)G2(w(t)) dt = 0

or, equivalently,

1− µ |s|µ−2
∫

R

a(t)G1(w(t)) dt+ ν |s|ν−2
∫

R

b(t)G2(w(t)) dt = 0. (3.1)

It is not difficult to observe that for any w ∈ S equation (3.1) has exactly two nontrivial
solutions ±s(w). Indeed, setting

ϕw(s) = 1− µ |s|µ−2
∫

R

a(t)G1(w(t)) dt+ ν |s|ν−2
∫

R

b(t)G2(w(t)) dt

for s 6= 0, it results
lim

|s|→+∞
ϕw(s) = −∞

since ν < µ.
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Moreover,

lim
s→0

ϕw(s) =





+∞ if 1 < ν < 2,

1 + 2
∫

R

b(t)G2(w(t)) dt if ν = 2,

1 if ν > 2.

Then, ϕw has at least two zeros. More precisely, ϕw admits exactly two zeros
since for s 6= 0 it follows

ϕ′w(s) = −µ(µ− 2)|s|µ−4s

∫

R

a(t)G1(w(t)) dt+ ν(ν − 2)|s|ν−4s

∫

R

b(t)G2(w(t)) dt.

Clearly, the equation ϕ′w(s) = 0 does not admit solutions if 1 < ν ≤ 2 while if ν > 2
it has two solutions

s(w) = ±
(
ν(ν − 2)

∫
R b(t)G2(w(t)) dt

µ(µ− 2)
∫
R a(t)G1(w(t)) dt

)1/(µ−ν)

.

The functional Ĵ0(w) = J̃0(s(w), w) on the unit sphere S reduces to

Ĵ0(w) = s2(w)
2 − |s(w)|µ

∫

R

a(t)G1(w(t)) dt+ |s(w)|ν
∫

R

b(t)G2(w(t)) dt.

From equation (3.1) we have

Ĵ0(w) =
(

1
2 −

1
µ

)
s2(w) + ν

(
1
ν
− 1
µ

)
|s(w)|ν

∫

R

b(t)G2(w(t)) dt.

Since b(t) ≥ 0 and G2(w) ≥ 0, we get
∫
R b(t)G2(w(t)) dt ≥ 0 and then Ĵ0 is bounded

from below since it is the sum of two non-negative terms.
At this point, we prove that Ĵ0 is weakly continuous on S. Let {wn} ⊂ S be

a weakly convergent sequence to w ∈ E. Since E ↪→↪→ Lp(R,RN ) for any p ≥ 2, it
follows that wn → w in Lp(R,RN ) for any p ≥ 2. Now, we prove that, as n→ +∞,

∫

R

a(t)G1(wn(t)) dt→
∫

R

a(t)G1(w(t)) dt, (3.2)

∫

R

b(t)G2(wn(t)) dt→
∫

R

b(t)G2(w(t)) dt. (3.3)

Indeed, from (H1), (H3) and the Lagrange Theorem for any n ∈ N and for any t ∈ R
there exists θn(t) ∈ [0, 1] such that
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∣∣∣∣∣∣

∫

R

a(t)G1(wn(t)) dt−
∫

R

a(t)G1(w(t)) dt

∣∣∣∣∣∣

≤Ma

∫

R

|G1(wn(t))−G1(w(t))|) dt

= Ma

∫

R

∣∣∣
(
∇G1

(
wn(t) + θn(t)(w(t)− wn(t))

))
· (wn(t)− w(t))

∣∣∣ dt.

(3.4)

Now, by Proposition 1.4 (iv) and applying the Hölder inequality to the last integral
in (3.4) we have

∣∣∣∣∣∣

∫

R

a(t)G1(wn(t)) dt−
∫

R

a(t)G1(w(t)) dt

∣∣∣∣∣∣

≤Ma

∫

R

∣∣∣∇G1

(
wn + θn(w − wn)

)∣∣∣ |wn − w| dt

≤MaM∇G1

∫

R

|wn + θn(w − wn)|µ−1 |wn − w| dt

≤Ma M∇G1 |wn + θn(w − wn)|µ−1
µ |w − wn|µ

≤MaM∇G1 2µ−2 (|wn|µ−1
µ + |w − wn|µ−1

µ

)
|w − wn|µ

≤ c1 |wn − w|µ,

where the term in the last line goes to zero since wn → w in Lµ(R,RN ). Therefore,
we conclude that (3.2) is satisfied. In a similar way, we can prove (3.3) if ν ≥ 2. On the
other hand, if 1 < ν < 2, from (H1), (H4) and using the Lagrange Theorem and the
Hölder inequality, we obtain

∣∣∣∣∣∣

∫

R

b(t)G2(wn) dt−
∫

R

b(t)G2(w) dt

∣∣∣∣∣∣

≤
∫

R

b(t)
∣∣∣∇G2

(
wn + θn(t)(w − wn)

)∣∣∣ |wn − w| dt

≤ c2

∫

R

b(t)
(
|wn|ν−1 + |w − wn|ν−1) |wn − w| dt

= c2



∫

R

b(t) |wn|ν−1 |wn − w| dt+
∫

R

b(t) |w − wn|ν dt




≤ c2 |b| 2
2−ν

(
|wn| 2

ν−1
|wn − w|2 + |wn − w|ν2

)
,
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where the term in the last line goes to zero since wn → w in L2(R,RN ) and {|wn| 2
ν−1
}

is bounded as 2
2−ν > 2. Thus, (3.3) is satisfied.

From the implicit functions theorem the sequence s(wn) of solutions of equation
(3.1) converges to the corresponding solution s(w), therefore

Ĵ0(wn)→ Ĵ0(w).

By the Weierstrass theorem, Ĵ0 attains its minimum at a point w ∈ B. Now, it remains
to prove that w ∈ S. Indeed, by using Euler’s Theorem and the bifurcation equation
(3.1), we get

d

dθ
Ĵ0(θ w)

= d

dθ

(s2(θw)
2 − |s(θw)|µ

∫

R

a(t)G1(θw(t)) dt+ |s(θw)|ν
∫

R

b(t)G2(θw(t)) dt
)

= s(θw) d

dθ
(s(θw))− µ |s(θw)|µ−2 s(θw) d

dθ
(s(θw))

∫

R

a(t)G1(θw(t)) dt

− |s(θw)|µ
θ

∫

R

a(t) (∇G1(θw(t)), θw(t)) dt

+ ν |s(θw)|ν−2 s(θw) d
dθ

(s(θw))
∫

R

b(t)G2(θw(t)) dt

+ |s(θw)|ν
θ

∫

R

b(t) (∇G2(θw(t)), θw(t)) dt

= −µ |s(θw)|µ
θ

∫

R

a(t)G1(θw(t)) dt+ ν
|s(θw)|ν

θ

∫

R

b(t)G2(θw(t)) dt

+ d

dθ
(s(θw))

(
s(θw)− µ |s(θw)|µ−2s(θw)

∫

R

a(t)G1(θw(t))

+ ν |s(θw)|ν−2s(θw)
∫

R

b(t)G2(θw(t))
)

= −µ |s(θw)|µ
θ

∫

R

a(t)G1(θw(t)) dt+ ν
|s(θw)|ν

θ

∫

R

b(t)G2(θw(t)) dt

= −|s(θw)|2
θ

< 0

for every θ ∈ ]0, 1]. Thus, Ĵ0(θ w) decreases with respect to θ ∈ [0, 1] and the minimum
is attained for θ = 1, that is, min Ĵ0(θ w) is achieved on S so w ∈ S. According to the
fibering method, we get ±s(w)w are two solutions of problem (1.2) with f = 0.

Now, since Ĵ0 is even, bounded from below, weakly continuous and of class C1

on S, by the theory of Lusternik–Schnirelmann introduced in [8], it follows that Ĵ0
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admits a sequence of conditionally critical points w1, w2, . . . , wn, . . . ∈ S such that
Ĵ0(wn)→ +∞ as n→ +∞. From Theorem 2.2 we conclude that problem (1.2) in the
case f = 0 has a sequence of distinct solutions ±q1,±q2, . . .±qn, . . . with qn = s(wn)wn
and J0(qn)→ +∞ as n→ +∞.

4. PROOF OF THEOREM 1.2: NON-SYMMETRIC CASE

In this section we consider the case f 6= 0. The energy functional Jf extended to R×E
becomes

J̃f (s, w) = J̃0(s, w)− s
∫

R

(f(t), w(t)) dt

and its restriction to R× S is

J̃f (s, w) = s2

2 − |s|
µ

∫

R

a(t)G1(w(t)) dt+ |s|ν
∫

R

b(t)G2(w(t)) dt− s
∫

R

(f(t), w(t)) dt.

The bifurcation equation involves

∂J̃f
∂s

(s, w) = 0⇐⇒

s− µ |s|µ−2s

∫

R

a(t)G1(w(t)) dt+ ν |s|ν−2s

∫

R

b(t)G2(w(t)) dt =
∫

R

(f(t), w(t)) dt.

(4.1)

At this point, we prove that equation (4.1) admits at least three different roots si(w)
for i = 1, 2, 3 if f is sufficiently small. Let ψw : R→ R be the function defined as

ψw(s) = s− µ |s|µ−2s

∫

R

a(t)G1(w(t)) dt+ ν |s|ν−2s

∫

R

b(t)G2(w(t)) dt

for any s ∈ R. Clearly, ψw is odd, lim
s→+∞

ψw(s) = −∞ and ψ′w(s) = 0 has exactly two
distinct solutions ±s(w). Indeed, for s > 0 by derivation we obtain

1− µ(µ− 1) sµ−2
∫

R

a(t)G1(w(t)) dt+ ν(ν − 1) sν−2
∫

R

b(t)G2(w(t)) dt = 0. (4.2)

This equation is similar to (3.1) in Section 3. It results

lim
s→+∞

ψ′w(s) = −∞

being ν < µ. Moreover,

lim
s→0

ψ′w(s) =





+∞ if 1 < ν < 2,

1 + 2
∫

R

b(t)G2(w(t)) dt if ν = 2,

1 if ν > 2.
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Now, we note that

(ψ′w)′(s)

= −µ(µ− 1)(µ− 2)sµ−3
∫

R

a(t)G1(w(t)) dt+ ν(ν − 1)(ν − 2)sν−3
∫

R

b(t)G2(w(t)) dt.

Therefore, if 1 < ν ≤ 2 it results (ψ′w)′(s) < 0 for all s > 0 while if ν > 2 it follows

(ψ′w)′(s) = 0⇐⇒ s(w) = ±




ν(ν − 1)(ν − 2)
∫

R

b(t)G2(w(t)) dt

µ(µ− 1)(µ− 2)
∫

R

a(t)G1(w(t)) dt




1/(µ−ν)

.

In particular, it follows that ψ′w has exactly two zeros then ψw has a local minimum
and a local maximum such that Mw = −mw. Thus, the bifurcation equation (4.1)

ψw(s) =
∫

R

(f(t), w(t)) dt

has three distinct solutions if
∣∣∣∣∣∣

∫

R

(f(t), w(t)) dt

∣∣∣∣∣∣
< Mw.

We are not able to evaluate explicitly Mw but we can observe that

ψw(s) ≥ ψw(s) = s− µ sµ−1
∫

R

a(t)G1(w(t)) dt

for every w ∈ S and s ≥ 0 since b(t) ≥ 0 and G2(w(t)) ≥ 0. Direct calculations show
that, denoting by Mw the local maximum of ψw, it is

Mw = ψw


µ(µ− 1)

∫

R

a(t)G1(w(t)) dt



− 1
µ−2

= (µ− 2)(µ− 1)−
µ−1
µ−2


µ

∫

R

a(t)G1(w(t)) dt



− 1
µ−2

Since Mw ≥Mw, if we suppose

sup
w∈S

(∣∣∣∣∣

∫

R

(f(t), w(t)) dt
∣∣∣∣∣

(∫

R

a(t)G1(w(t)) dt
) 1
µ−2
)
< (µ)−

1
µ−2 (µ− 2)(µ− 1)−

µ−1
µ−2 ,

(4.3)
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the bifurcation equation admits three isolated smooth branches of solutions si = si(w)
for i = 1, 2, 3. We note that inequality (4.3) holds if f ∈ Lµ′(R,RN ) with |f |µ′ small.
Indeed,

∣∣∣∣∣∣

∫

R

(f(t), w(t)) dt

∣∣∣∣∣∣

(∫

R

a(t)G1(w(t)) dt
) 1
µ−2

≤ |f |µ′ |w|µ
(
MaMG1 |w|µµ

) 1
µ−2

≤ |f |µ′
(
MaMG1 c

2µ−2
µ

) 1
µ−2 ,

where we have exploited the fact that |w|µ ≤ cµ‖w‖E = cµ for all w ∈ S. Hence, it is
enough to choose |f |µ′ such that

|f |µ′
(
MaMG1 c

2µ−2
µ

) 1
µ−2 ≤ (µ)−

1
µ−2 (µ− 2)(µ− 1)−

(µ−1)
µ−2 ,

that is,

|f |µ′ ≤ δ(µ, cµ,Ma,MG1) := (µ)−
1

µ−2 (µ− 2)(µ− 1)−
µ−1
µ−2 c

− 2(µ−1)
µ−2

µ (MaMG1)−
1

µ−2 .

Now, let us consider the three induced functionals

Ĵf,i(w) = J̃f,i(si(w), w) = 1
2 s

2
i (w)− |si(w)|µ

∫

R

a(t)G1(si(w(t)) dt

+ |si(w)|ν
∫

R

b(t)G2(si(w(t)) dt− si(w)
∫

R

(f(t), w(t)) dt

which are defined and distinct on B \ {0}. Reasoning in a similar way as in the case
f = 0, it is possible to prove that for each i = 1, 2, 3 the functional

J̃f,i(w) = Ĵ0(w)− si(w)
∫

R

(f(t), w(t)) dt

is bounded from below and weakly continuous, then it achieves its minimum at
a point wi ∈ B with si(wi) 6= 0. Moreover, we can see that wi ∈ S since, using again
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Euler’s Theorem and the bifurcation equation (4.1), it results

d

dθ
Ĵf,i(θ w) = d

dθ

(1
2 s

2
i (θw)− |si(θw)|µ

∫

R

a(t)G1(θ(w(t)) dt

+ |si(θw)|ν
∫

R

b(t)G2(θ(w(t)) dt− si(θw)
∫

R

(f(t), θ w(t)) dt
)

= −µ |si(θw)|µ
θ

∫

R

a(t)G1(θ w(t)) dt+ ν
|si(θw)|ν

θ

∫

R

b(t)G2(θ w(t)) dt

− si(θw)
∫

R

(f(t), w(t)) dt+ d

dθ
s(θw)

(
si(θw)

− µ|si(θw)|µ−2si(θw)
∫

R

a(t)G1(θ w(t)) dt

+ ν|si(θw)|ν−2si(θw)
∫

R

b(t)G2(θ w(t)) dt−
∫

R

(f(t), θ w(t)) dt
)

= −s
2
i (θw)
θ

< 0

for every θ ∈ ]0, 1]. Thus, min Ĵf,i(θ w) is achieved on S. Consequently, wi = si(wi)wi
are three critical points of the functional Jf and then three solutions of the assigned
equation (1.2). Since the sign of si(wi) depends on the sign of

∫
R(f(t), wi(t)) dt we get

∫

R

(f(t), w1(t)) dt ≤ 0,
∫

R

(f(t), w2(t)) dt ≥ 0 and
∫

R

(f(t), w3(t)) dt ≥ 0.

Proof of Corollary 1.3. It is enough to apply [4, Lemma 2.3].
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