In this work, we consider symmetric positive definite pencils depending on two parameters. That is, we are concerned with the generalized eigenvalue problem $A(x)-lambda B(x)$, where $A$ and $B$ are symmetric matrix valued functions in ${mathbb R}^{n imes n}$, smoothly depending on parameters $xin Omegasubset {mathbb R}^2$; further, $B$ is also positive definite. In general, the eigenvalues of this multiparameter problem will not be smooth, the lack of smoothness resulting from eigenvalues being equal at some parameter values (conical intersections). We first give general theoretical results on the smoothness of eigenvalues and eigenvectors for the present generalized eigenvalue problem, and hence for the corresponding projections, and then perform a numerical study of the statistical properties of coalescing eigenvalues for pencils where $A$ and $B$ are either full or banded, for several bandwidths. Our numerical study will be performed with respect to a random matrix ensemble which respects the underlying engineering problems motivating our study.

Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions

Pugliese, Alessandro
2019-01-01

Abstract

In this work, we consider symmetric positive definite pencils depending on two parameters. That is, we are concerned with the generalized eigenvalue problem $A(x)-lambda B(x)$, where $A$ and $B$ are symmetric matrix valued functions in ${mathbb R}^{n imes n}$, smoothly depending on parameters $xin Omegasubset {mathbb R}^2$; further, $B$ is also positive definite. In general, the eigenvalues of this multiparameter problem will not be smooth, the lack of smoothness resulting from eigenvalues being equal at some parameter values (conical intersections). We first give general theoretical results on the smoothness of eigenvalues and eigenvectors for the present generalized eigenvalue problem, and hence for the corresponding projections, and then perform a numerical study of the statistical properties of coalescing eigenvalues for pencils where $A$ and $B$ are either full or banded, for several bandwidths. Our numerical study will be performed with respect to a random matrix ensemble which respects the underlying engineering problems motivating our study.
File in questo prodotto:
File Dimensione Formato  
EDITORIALE_Numerical-Algorithms-2018.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IRIS_DiPaPu_NumAlg_Final.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 820.38 kB
Formato Adobe PDF
820.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/218131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact