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COALESCING POINTS FOR EIGENVALUES OF BANDED MATRICES

DEPENDING ON PARAMETERS

WITH APPLICATION TO BANDED RANDOM MATRIX FUNCTIONS

LUCA DIECI, ALESSANDRA PAPINI, AND ALESSANDRO PUGLIESE

Abstract. In this work, we develop and implement new numerical methods to locate
generic degeneracies (i.e., isolated parameters’ values where the eigenvalues coalesce) of
banded matrix valued functions. More precisely, our specific interest is in two classes
of problems: (i) symmetric, banded, functions A(x) ∈ R

n×n, smoothly depending on
parameters x ∈ Ω ⊂ R

2, and (ii) Hermitian, banded, functions A(x) ∈ C
n×n, smoothly

depending on parameters x ∈ Ω ⊂ R
3.

The computational task of detecting coalescing points of banded parameter dependent
matrices is very delicate and challenging, and cannot be handled using existing eigenval-
ues’ continuation approaches. For this reason, we present and justify new techniques that
will enable continuing path of eigendecompositions and reliably decide whether or not
eigenvalues coalesce, well beyond our ability to numerically distinguish close eigenvalues.

As important motivation, and illustration, of our methods, we perform a computa-
tional study of the density of coalescing points for random ensembles of banded matrices
depending on parameters. Relatively to random matrix models from truncated GOE
and GUE ensembles, we will give computational evidence in support of power laws for
coalescing points, expressed in terms of the size and bandwidth of the matrices.

1. Introduction

In this work, we consider families of banded matrices smoothly depending on parame-
ters, and we are interested in locating parameter values where the eigenvalues coalesce. To
be precise, we will consider banded symmetric (real valued) functions depending on two
real parameters, and banded Hermitian (complex valued) functions depending on three
real parameters. The bandwidth, hereafter indicated with b, will always be b ≥ 1, the case
b = 1 corresponding to tridiagonal functions. We will always assume that the eigenvalues
are ordered: λ1 ≥ λ2 ≥ · · · ≥ λn.

To be interesting, doable, and typical, locating parameter values where the eigenvalues
coalesce requires these values to be isolated, and this is the reason why we restrict to two
parameters in the real symmetric case, and three parameters in the Hermitian case. In
fact, as it is well understood (a result dating back to von Neumann and Wigner, [17]), for
symmetric functions eigenvalues coalescing is a co-dimension 2 phenomenon; similarly, in
the Hermitian case, it is a real co-dimension 3 phenomenon (e.g., see [5] or [15]). Although
these results were stated for full, not banded, functions, the stated co-dimensions do not
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change for banded functions with bandwidth b ≥ 1. This last statement is simple to verify,
in the same manner as in [5, Theorem 4.2], upon realizing that the statements A = QDQT

(symmetric case, Q orthogonal and D diagonal) and A = UDU∗ (Hermitian case, U
unitary and D diagonal) now entail additional constraints inherited by the structure of
A; namely, one must have (QDQT )ij = 0 (respectively, (UDU∗)ij = 0), for i − j > b
(j = 1, . . . , n − b − 1). Using these extra constraints in the computation of the degrees of
freedom one has in specifying Q and D (in the symmetric case), respectively U and D (in
the Hermitian case), with a coalescing pair of eigenvalues, and comparing to the degrees
of freedom one has in specifying A, as in [5], it is immediate to obtain co-dimension 2 in
the symmetric banded case, and 3 in the banded Hermitian case.

The co-dimension tells us how many parameters we need in order to expect the oc-
currence of coalescing; e.g. -generically, in the space of smooth symmetric functions- one
needs two parameters in order to observe eigenvalues coalescing.

To witness, for two parameter symmetric
functions, one should expect to have iso-
lated parameters’ values where the eigen-
values coalesce, eigenvalues surfaces come
together at a coalescing point as two
upside-down cones (hence, the name con-
ical intersections, CIs for short, given to
the phenomenon), and coalescing is a ro-
bust phenomenon (it persists under small
perturbation, though of course the param-
eters’ values where it occurs will typically
change). See the figure on the right.

At the same time, we should not expect to have coalescing eigenvalues for functions of
one parameter, a fact that precludes being able to locate coalescing eigenvalues by freezing
all but one parameter; indeed, for full (i.e., not banded) matrices, we developed numerical
methods of topological nature both for symmetric two-parameter functions and Hermitian
three-parameter ones. In the symmetric case (see [9]), our technique exploited the relation
between coalescing eigenvalues and rotation of eigenvectors along a closed loop containing
the coalescing point; the latter property is well established, first observed in [14] and
then rediscovered many times. In the Hermitian case, we exploited the relation between
coalescing eigenvalues and the preservation, or lack thereof, of a certain eigen-phase as we
cover a closed surface enclosing the coalescing point; see [8] for details of our numerical
method, and [22] and [2] for fundamental (theoretical) contributions.

The crux of our numerical techniques consists in being able to compute a smooth eigen-
decomposition along 1-d paths, when the eigenvalues are distinct along the path; this
computation we did (and do) with adaptive time-stepping methods, in a way easier ap-
preciated by looking at Figure 1.

At a high level (technical details are explained in [9, 8]), our techniques for full matrices,
in the symmetric, respectively Hermitian, cases proceed as follow. We will assume that
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Figure 1. Typical domains: 2-d case on left, and 3-d on the right.

the parameter region Ω of interest is a square in the symmetric case, and a cube in the
Hermitian case.

(a) Subdivide Ω in a number of smaller squares (the subdivision can be done adap-
tively). On each of these smaller squares, compute smooth eigendecompositions
from the SW to the NE corners (xi,j and xi+1,j+1 in Figure 1) along the two paths
Γ1 and Γ2, call U1 and U2 the obtained orthogonal factors. Form the diagonal
matrix D = UT

1 U2. This matrix D will have 1 or −1 on the diagonal, with the
−1’s betraying if/which eigenvalues have coalesced inside the small square. E.g.,

suppose we have n ≥ 4, and D =







−1
1

1
−1

. . .







; then, we can anticipate that

inside the square the pairs (λ1,λ2), (λ2,λ3), and (λ3,λ4), have coalesced.
(b) In the Hermitian case, we subdivide Ω in smaller cubes (again, this can be done

adaptively). For each of these small cubes, we proceed from the South to the
North poles (the endpoints of the red curve in Figure 1), integrating along the
“parallels” (the concentric squares) starting and ending at a point on the red
curve; call s the parametrization of the red curve, with s going from 0 to 1. As we
move along the meridians, we monitor (smoothly!) the accrued geometric phases
αj(s) (alias Berry phases) for each eigenvalue; to achieve this we must compute
the so-called minimum variation decomposition (MVD) along the parallels (see
[10, 8]). Upon reaching the North pole, and looking at αj(1), j = 1, . . . , n, we
can determine if/which eigenvalues coalesced inside the current cube. Again, see
[10, 8] for theoretical and numerical details.

Remark 1.1. The work-horse of our technique is the adaptive integration along the 1-d
paths. Referring to [9, 8] for specific details, here we simply stress that both eigenvalues
and eigenvectors variations impact the choice of adaptive stepsize.
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However, when we directly used the same implementation of [9, 8] for banded functions,
we encountered remarkable difficulties and often failed to smoothly continue the 1-d path of
eigendecompositions. What happened is that our codes progressively reduced the stepsize,
without being able to separate numerically the computed eigenvalues, or to decide that
they had coalesced: eventually the stepsize became so small that the codes halted and we
were unable to count degeneracies in the region of interest.

The difficulty is not that there are coalesc-
ing points along the 1-d path (a fact that
we know should not occur), but rather that
there is a prevalence of veering phenomena
(also called avoided crossings): some pairs
of eigenvalues get very close to one another,
without actually coalescing, before eventu-
ally separating; yet, the eigenvalues are so
close that we cannot distinguish them. See
the figure on the right, and see Section 1.2
below for further insight into this fact in the
banded case.

For the above reason, in this work we propose and implement a different technique,
whereby we dynamically group together close eigenvalues, compute (smoothly) the as-
sociated invariant subspace until the veering region is passed, and further rotate this
subspace to decide how to continue the eigendecomposition after we exit the veering re-
gion. This way of proceeding allowed us to continue the eigendecompositions more reliably
than without grouping close eigenvalues, and well beyond the range of applicability of the
latter approach. Details are in Section 2.

Finally, in this work, we also present ad-hoc techniques for monitoring eigenvalues
coalescing of tridiagonal functions, see Section 2.3.

1.1. Model problem: degeneracies of banded random matrices depending on
parameters. Random matrices are widely accepted as an important model to obtain
statistical properties on the spectra of physical systems; in particular, random matrix
models have been successfully applied to obtain statistical information on the spectra of
quantum systems. Of particular interest in the random matrix community is the statistical
distribution of eigenvalues in the case of full and banded symmetric/Hermitian matrices.
In both of these cases, studies exist on the distribution of eigenvalues, and of course of
the maximal eigenvalue. The well known semi-circle Wigner’s law represents the most
striking example of universal property (see [23] for an overview); for the banded case, see
[3, 11, 13, 16, 21] for a sample of works, the concern has chiefly been on decay properties of
eigenvectors, i.e., “localization/delocalization” properties (see also earlier works by Demko
and others, [4], and the recent review [1] for related questions).

An important consideration, for our purposes, is that numerical studies of spectral
properties of random matrices are rather simple to do. High level, reliable, software
to generate random matrices whose entries obey a particular probability distribution,
and to compute their eigenvalues, is easily accessible (e.g., in Matlab); and, from these
computations, it is possible to extract statistics on the distribution of eigenvalues and the
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maximal/minimal eigenvalues (recall that the eigenvalues are continuous functions). This
way of proceeding is very well explained in the review article of Edelman and Rao [12].
In other words, through standard numerical experiments, it is easy to gather insight, or
to confirm theoretical results, insofar as the eigenvalues distribution for random matrices
obeying a certain probability distribution. In the banded case, it is equally standard to
numerically compute eigenvalues, though in this case it is less clear which one should be
the probability distribution of the entries, see below.

In the full case, studies exist also on distribution of degeneracies, viz. coalescing
eigenvalues, for parameter dependent matrices; for example, see the collection of works
[24, 25, 26], where remarkable power laws for GOE and GUE (Gaussian Orthogonal and
Gaussian Unitary Ensembles, respectively) were derived (our own computational work [8]
confirmed these theoretical works). However, in the banded case, no study on statisti-
cal properties of degeneracies exists for random parameter dependent matrices, and we
venture to say that this is at least in part due to the incredible numerical difficulties of
approximating coalescing eigenvalues in this case, and the consequent lack of insight into
what one should expect. This task is the one we address in this work.

Generation of random matrix parameter dependent ensembles is itself a delicate task in
the banded case. In the full case, generating GOE or GUE ensembles is simple and well
documented. For example, following [25], a two parameter GOE ensemble is obtained as

(1) A(x, y) = cos(x)A1 + sin(x)A2 + cos(y)A3 + sin(y)A4 ,

where A1, . . . , A4, are symmetric matrices with diagonal entries in N(0, 1) and off-diagonal
in N(0, 1

2 ); similarly, a three parameter GUE ensemble is obtained as

(2) A(x, y, z) = cos(x)A1 + sin(x)A2 + cos(y)A3 + sin(y)A4 + cos(z)A5 + sin(z)A6 ,

where A1, . . . , A6, are Hermitian matrices, themselves generated as Aj = Bj + iCj , j =
1, . . . , 6, with Bj’s symmetric and Cj’s antisymmetric, so that in the end Aj’s diagonal
entries are in N(0, 1) and each off-diagonal entry of the Bj’s and Cj ’s (respecting the
relevant symmetries) is in N(0, 1

2 ).
However, there is no obvious counterpart on how to generate appropriate ensembles

for banded random matrices; e.g., cfr. the differences in [16] and [20]. For example, if
one considers a full random symmetric matrix (GOE), as above, and performs on it the
standard reduction to tridiagonal form, the end result is a matrix whose diagonal entries
are still in N(0, 1), but the co-diagonal entries now obey the χ-distribution with degrees
of freedom from n − 1 to 1 (see [12]). Naturally, in a parameter independent setting, one
will obtain the same statistical information on the distribution of the eigenvalues whether
starting with a full matrix, or with a tridiagonal one, as long as the respective distributions
on the entries are adopted. However, in the parameter dependent setting, this way of
proceeding is not meaningful; for one thing, it cannot be expected that four (random
symmetric) matrices can be simultaneously brought to tridiagonal form; moreover, at best
we would learn something about the full, not banded, case (particularly, insofar as the
number of degeneracies).

For the above reasons, in our numerical study we consider banded structures obtained
by truncating an ensemble generated according to either (1) or (2) (this approach, to the
best of our knowledge, was first adopted and studied by Schenker, [20]). We will still refer
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to these banded ensembles as GOE and GUE, since orthogonal/unitary transformations
preserve the joint element density. Indeed, in this banded case with bandwidth b, for the
joint element density of a matrix A, one has

(3)
1

2n/2

1

π[2n+b(2n−b−1)]/4
e−(‖A‖2

F )/2 , b = 1, . . . , n − 1 .

At the same time, in the banded case, an orthogonal/unitary transformation of a banded
symmetric/Hermitian matrix in general destroys the band structure.

For these banded GOE (symmetric case) and GUE (Hermitian case), we are able to
give evidence of a power law on the number of degeneracies in terms of the size n of the
problem, and of the bandwidth b. The power law we find, of the type

(4) # coalescing = cnp ,

will show several remarkable facts, the most important being the dependence of the ex-
ponent p on the bandwidth (also the constant c depends on b, and n, of course, but this
is not our main concern here). For example, in the Hermitian GUE case, the exponent
will go from p = 2.5 in the full case (b = n − 1), to p ≈ 3 in the tridiagonal case (b = 1).
[For diagonal problems, coalescing occurs along curves for symmetric two-parameter func-
tions, and along 2-d surfaces for Hermitian three-parameter functions.] For values of b
in between these two extremal values, we observe a monotonically increasing behavior in
p as b decreases1. Another striking fact we observe is that the difference in the power
law exponent between the GOE and GUE ensembles in the full case, where p = 2 for the
GOE and p = 2.5 for the GUE, progressively disappears as the band approaches b = 1,
both cases eventually settling toward p = 3. Finally, our numerical study in [8] indicated
that for full matrices the degeneracies were spatially uniformly distributed, but in the
present band case this is surely not the case; this is obvious (see later) in the case b = 1
(tridiagonal problems), but also for other band values (b = 2, 3, . . . ), the spatial distribu-
tion of degeneracies does not appear to be uniform, and we conjecture that the spatial
distribution converges to being uniform as b → n − 1.

1.2. Numerical issues. Veering and “min-gap”. In the numerical analysis commu-
nity, it is amply acknowledged that it is hard (if not downright impossible) to decide
in finite precision if two eigenvalues are merely close or equal. One of the best known
examples of this difficulty is the famous Wilkinson matrix: a symmetric tridiagonal ma-
trix with 1’s on the co-diagonal, and diagonal entries given by (10, 9, . . . , 1, 0, 1, . . . , 9, 10).
This famous example is easy to write down, but it is otherwise not particularly special
as far as having tridiagonal matrices for which one is unable to decide, in finite precision,
if eigenvalues are distinct or not; see [27] and [18]. In this work, all computations have
been performed in double precision, the default precision in Matlab. This corresponds to
a machine precision eps ≈ 2.2 × 10−16.

In the special case of the Wilkinson matrix, since the problem is tridiagonal and unre-
duced (i.e., no co-diagonal entry is 0), of course Sturm theorem tells us that the eigenvalues
must be all distinct.

1To be fair, our numerical study is restricted to selected values of b, b = 1, 2, 3, 4, 5, for values of n up
to 150.
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Theorem 1.2 (Sturm). Given A = AT ∈ Rn×n or A = A∗ ∈ Cn×n, tridiagonal. Then, a
necessary condition for two eigenvalues to be equal is that a co-diagonal entry be 0.

We will exploit Theorem 1.2 to find the number of degeneracies in the tridiagonal case;
see Section 2.3.

Remark 1.3. For computing eigenvalues of full symmetric/Hermitian matrices, the stan-
dard way of proceeding goes through a first step which brings the problem to symmetric real
tridiagonal form. In particular, even complex Hermitian unreduced tridiagonal matrices
can be taken to real symmetric unreduced tridiagonal form. For this reason, it is tempt-
ing to say that –for tridiagonal problems– one may as well restrict to the real symmetric
case. However, this is not a correct way to proceed when the interest is in computing coa-
lescing eigenvalues of parameters dependent Hermitian (tridiagonal) functions, a process
which requires monitoring the Berry phase along loops. Indeed, transforming a tridiago-
nal, unreduced, Hermitian function of one parameter (this is what we have along our 1-d
paths), into an unreduced, real symmetric function, produces a phase accumulation along
the loop which is different from the Berry phase.

But, beside the tridiagonal case, for which we have developed ad-hoc techniques, our
computational techniques for banded matrices with bandwidth 1 < b ' n−1, also require
special care. This is because of the previously mentioned veering phenomenon, which we
now try to elucidate.

As we previously remarked, we must be able to compute a continuous eigendecomposi-
tion along 1-d loops. For small bandwidth, there are veering phenomena with consecutive
eigenvalues within machine precision, a fact that precludes numerical continuation of the
eigendecomposition. During this veering, the associated orthonormal eigenvectors undergo
very rapid change (essentially, a clockwise or counter-clockwise rotation by π/2) within
an interval of width less than two consecutive machine numbers. As we show below, this
phenomenon gets worse as the dimension n grows, though it can be observed already in
(2, 2) systems.

Example 1.4 (Veering model problem). This simple (2, 2) model clarifies eigenvalues’
veering. Take the 2-parameter function

A(t) =

[

t ct − 1
ct − 1 2 − t

]

; with, e.g., t ∈ [0, 2] .

Note, that for c = 1 then A(1) = I, and if c (= 1, the eigenvalues are distinct for all t. If
c ≈ 1, veering occurs at (and near) t = 1.

Note that the eigenvalues are λ1,2 = 1 ±
[

2 − 2t(c + 1) + t2(c2 + 1)
]1/2

, and the un-
normalized orthogonal eigenvectors are

v1 =

[

ct − 1
λ1 − t

]

, v2 =

[

ct − 1
λ2 − t

]

.
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Considering c = 1 ± δ, and δ > 0
small, the eigenvectors seem to ex-
change with one another, though in
fact they do not and sharply rotate
by π/2. In the figure on the right,
we show the two eigenvectors for
c = 1 + δ and t ∈ [1 − 10δ, 1 + 10δ],
with δ = 10−3. 1.0151.011.00510.9950.99-0.01
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It remains to substantiate, and explain, the fact that veering phenomena are preva-
lent for banded functions, the more so the smaller the bandwidth b, and the larger the
dimension n.

1.2.1. Min-gap. Consider the following model problem, first for the real symmetric case,
then for the Hermitian case. Note that this model corresponds to the situation we
encounter when integrating along the 1-d paths we have2. We have a one parame-
ter function A(t), for t ∈ [0, 2π]; further, as it is generically true, we can assume that
λ1(t) > λ2(t) > . . . > λn(t) be the ordered eigenvalues of A(t).

Symmetric case. We have a 1-d path of banded matrices, A(t) = A1 cos(t)+A2 sin(t)+
B ∈ Rn×n where t ∈ [0, 2π], B is given by c2A3 + s2A4, with c2

2 + s2
2 = 1, but otherwise

randomly chosen, and A1, A2, A3, A4, are “banded GOE” matrices with bandwidth b. For
small b, and averaging over several GOE realizations, we monitor the min-gap quantity:

(5) MinGap := min
i=1...,n−1

min
t∈[0,π]

λi(t) − λi+1(t) .

[We stress that the eigendcomposition of the function A(t), t ∈ [0,π], is done with our
adaptive solver, whereby the stepsize is adapted to the variation of the eigenvalues and
eigenvectors: this is mandatory in order to compute the MinGap; in other words, for our
purposes, it would be insufficient –and misleading– to sample A at values of t on a fixed
grid.]

What we observe is that, for
b ' n, the MinGap decreases as
n grows. The speed at which
the MinGap decreases is itself
decreasing as b grows. See the
figure on the right (results ob-
tained by averaging over 20 re-
alizations).
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n

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

Mi
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b=2
b=3
b=4
b=5

2The computations on which we report below are themselves quite demanding, particularly those needed
for Figure 2.



Coalescing eigenvalues of banded matrices 9

Hermitian case. Now we have a 1-d path of band matrices, A(t) = A1 cos(t)+A2 sin(t)+
B ∈ Cn×n where t ∈ [0, 2π], B is given by c2A3 +s2A4 + c3A5 +s3A6, with c2

2 +s2
2 = 1 and

c2
3 + s2

3 = 1, but otherwise randomly chosen, and A1, . . . , A6, are “banded GUE” matrices
with bandwidth b.

Again, we observe that the
MinGap decreases as n grows,
with decreasing speed as b
grows. See the figure on the
right, for b = 1, . . . , 5, and n =
10, 20, . . . , 100 (again, results
obtained by averaging over 20
realizations).

10 20 30 40 50 60 70 80 90 100
n
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10 -8

10 -6
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Mi
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b=3
b=4
b=5

Note that the MinGap for banded GUE problems appears to decrease at a slower rate than
for banded GOE problems. This is consistent with our results in Section 3, where we
observe that the power law governing the number of CIs goes from ≈ n2.5 (in the full case)
to ≈ n3 (in the tridiagonal case) for GUE ensembles, and from ≈ n2 (in the full case) to
≈ n3 (in the tridiagonal case) for GOE ensembles.

Finally, we show (relatively to the banded GOE ensemble, as above) the graphs of the
MinGap for fixed n = 100 in terms of the bandwidth, as well as the converse situation,
for fixed b = 12 as n increases, see Figure 2 below (results obtained by averaging over 10
realizations).

0 5 10 15 20 25 30 35 40 45 50
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 150 200 250 300 350 400 450 500
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Figure 2. MinGap banded GOE. Left, n = 100, b = 1, 2, . . . , 50. Right,
b = 12, n = 100, 150, . . . , 500.

To sum up, for given b ' n, and for n sufficiently large, the MinGap becomes the size
of machine precision. This means that every such problem effectively undergoes a severe
veering phenomenon (already for small values of n, for small values of b), and it is hopeless
to try to continue an eigendecomposition like in Algorithm 2.1 below, through a veering
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Table 1. Average ratio ρ and standard deviation: 1000 conical intersec-
tions, n = 100.

b Average Ratio ρ Standard Deviation
1 0.0011 0.0194
2 0.0568 0.2396
3 0.0705 0.1356
4 0.1210 0.3484
5 0.1611 0.3276
10 0.3487 0.2103
20 0.4229 0.2081
50 0.4331 0.2093
99 0.4296 0.2160

zone. Specialized tools such as those described in Section 2 are needed to alleviate the
impact of veering.

1.2.2. Ellipses and MinGap. To complete this introduction, we consider the following nat-
ural question: What is the mechanism producing small values of MinGap? Below, we
propose a geometrical explanation, motivated by the work [24].

For simplicity, consider just the symmetric case, though a similar situation holds in the
Hermitian case. Let (x̄, ȳ) be a (isolated) parameter value where two eigenvalues, say λk

and λk+1, coalesce, for some 1 ≤ k ≤ n − 1. If we consider the scalar valued function
f(x, y) := (λk(x, y)−λk+1(x, y))2, then f(x̄, ȳ) = 0; further, its gradient is also 0 at (x̄, ȳ).
Therefore, locally, the function f is well approximated by a purely quadratic function:

f(x, y) ≈ h(x, y) :=

[

x − x̄
y − ȳ

]T

H(x̄, ȳ)

[

x − x̄
y − ȳ

]

for (x, y) ∈ Br(x̄, ȳ), a ball of radius r centered at (x̄, ȳ); here, H is the Hessian of f
(which is positive definite at (x̄, ȳ), since the conical intersection is isolated). Obviously,
the level sets of the function h are ellipses. The shape of these ellipses, that is the ratio
of the ellipses semi-axes, is the key aspect to consider. In other words, if we call µ1

and µ2 the eigenvalues of the Hessian, with µ1 ≥ µ2 > 0, the key quantity to look
at is ρ := µ2/µ1. Clearly, 0 < ρ ≤ 1, and the closer ρ is to 1 the more circular is
the ellipse, whereas the smaller is ρ the more elongated is the ellipse. Remarkably, the
value ρ unambiguously appears to depend on the bandwidth b, with smaller values of
ρ corresponding to smaller bandwidth b (in the limiting case of b = 0, i.e., a diagonal
problem, ρ = 0 since the Hessian is singular, the conical intersection is not isolated). See
Table 1 where we show results of numerical computations averaging the results relative
to 1000 conical intersections (randomly selected among the several thousands computed),
for banded GOE ensembles, ranging from tridiagonal to full matrices. Clearly, the smaller
the bandwidth, the more elongated is the ellipse.

Finally: how does the shape of these ellipses impact prevalence of veering phenomena
for banded problems with small bandwidth b? An explanation for this fact is based on a
simple geometrical argument. Consider a (small) loop in parameter space along which we
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compute a smooth eigendecomposition; this is the small square in the earlier description
of our topological method. Suppose that inside this small loop there is a coalescing point.
Consider the level set of h: h = λ1u2+λ2v2, with u2+v2 = δ > 0; in practice, we can think
of δ as the machine precision eps. This level set is an ellipse, more and more elongated
the smaller is b.

As a consequence, the level
sets of h are bound to in-
tersect the loop in parameter
space along which we are eigen-
decomposing the function, the
more likely so the smaller is the
loop and the value of b. See
the figure on the right for an
exemplification, where we are
showing concentric ellipses with
ρ = 1, 1

4 , 1
9 , respectively.

SW

NE

Therefore, even though along the loop the eigenvalues remain distinct, it becomes numer-
ically impossible to distinguish them for small b, and a veering phenomenon ensues.

2. Dealing with numerical difficulties: Numerical methods

Motivated by the serious numerical difficulties caused by veering phenomena, here we
explain the strategy we have adopted to alleviate its impact. We consider a 1-parameter
function A(t), for t ∈ [0, 1], and we are assuming that λ1(t) > λ2(t) > . . . > λn(t)
are the ordered eigenvalues of A(t). We want to obtain the smooth minimum variation
decomposition (MVD), A(t) = U(t)Λ(t)U∗(t) with t ∈ [0, 1] and the eigenvalues ordered
along the diagonal of Λ (with Q and QT instead of U and U∗ in the real case).

First, we recall the continuation procedure implemented in the case of well separated
eigenvalues. What is meant by this is embodied in the following definition, where notation
from Algorithm 2.1 is adopted.

Definition 2.1. Given a full ordered decomposition at tj, a pair of eigenvalues (λi, λi+1)
is declared “close to veering” in some interval [tj, tj+1] if one of the following conditions
holds:

|λi+1(tj+1) − λi(tj+1)|
|λi(tj+1)| + 1

< mindist ,
|λpred

i+1 − λpred
i |

|λpred
i | + 1

< mindist,

where mindist is a predifined tolerance3; otherwise, the eigenvalues are said to be “well
separated”. We do not expect and therefore do not consider the nongeneric case of three
or more close eigenvalues.

3e.g., we have used mindist = 106eps ≈ 10−10
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In the case of well separated eigenvalues, the continuation procedure is based on a
predictor-corrector strategy where the mesh 0 = t0 < t1 < . . . < tN = 1 is found adap-
tively, according to the variation of eigenvalues and eigenvectors. In particular, a relative
variation TolStep is allowed between predicted and computed factors, for both eigenval-
ues and eigenvectors. At each step, an ordered eigendecomposition is first computed using
standard linear algebra software. Then, since the eigenvectors are uniquely defined up to a
phase factor eiφ, with φ ∈ R, smoothness is approximately recovered by enforcing minimum
variation with respect to the predicted eigenvectors. Below, we denote by Uj the computed
approximation to U(tj). Observe that in the real case eiφ reduces to ±1, so that only the
signs of the eigenvectors must be corrected and we can recover the exact orthogonal factor
Q(tj). We use predicted factors of the form Upred = Uj + h U̇j and Λpred = Λj + h Λ̇j ,
with approximate derivatives U̇j * U̇(tj) and Λ̇j * Λ̇(tj) obtained by replacing Ȧ(tj) with
(A(tj+1) − A(tj))/(tj+1 − tj) in the differential equations:

Λ̇ = diag(U∗ȦU), U̇ = UH,

where H is the skew-Hermitian matrix such that

Hik = −H̄ki =
[U∗ȦU ]ik
λi − λk

, for i < k, Hii = 0 for i = 1, . . . , n.

Algorithm 2.1: Predictor-Corrector step

Given an ordered eigendecomposition at tj: A(tj) = UjΛ(tj)U∗
j and a stepsize h, we

want the (approximate) MVD at tj+1 = tj + h: A(tj+1) = Uj+1Λ(tj+1)U∗
j+1.

1. Set tj+1 = tj + h, and compute Upred = Uj + h U̇j and Λpred = Λj + h Λ̇j ;
2. Compute an algebraic ordered Schur decomposition A(tj+1) = UcΛ(tj+1)U∗

c ;
3. Find the phase matrix Φ s.t. Φ = argmin||Upred − UcΦ||F , and set Uj+1 = UcΦ;
4. Set ρ = max{ρλ, ρU}/TolStep and update h = h/ρ, where:

ρλ = max
i

|λi(tj+1) − λpred
i |

|λi(tj+1)| + 1
, ρU =

‖U(tj+1) − Upred‖F√
n

5. If ρ ≤ 1.5, accept the step;
otherwise declare failure, go to step 1, and retry with the new (smaller) h.

The above steplength strategy is robust and efficient, as long as the eigenvalues stay
well separated, as we observed to be the case for full matrices. But being U̇ inversely
proportional to the distance between eigenvalues, it can yield prohibitively small values
for h in proximity of veering zones, which are routinely encountered in the case of band
matrices. In practice, within a veering zone, it is impossible to distinguish a pair of
close eigenvalues; to overcome this critical situation, we implemented a strategy (see [6])
in which close eigenvalues are grouped into 2 × 2 blocks, and a smooth block-diagonal
eigendecomposition is computed until all eigenvalues are well separated again. A key
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concern, then, will be how to recover the correct eigendecomposition (smoothly) after we
exit the veering zone.

We will distinguish between the case of a real symmetric function A (depending on
two real parameters in the original setup), and the case of a complex Hermitian function
(depending on three real parameters in the original setup). The following outline of our
technique applies to both cases.

(i) Suppose that we have been able to compute successfully the full eigendecomposi-
tion of A, with ordered eigenvalues, up to a point tj , that h is the current con-
tinuation stepsize, and that in the interval [tj, tj + h] two consecutive eigenvalues
are close to veering, all other eigenvalues being well separated from each other and
from this pair. Without loss of generality, assume that these close eigenvalues are
the first two eigenvalues: λ1,λ2.

(ii) Starting at tj, we compute a block diagonal decomposition with a smooth orthog-
onal (respectively, unitary) transformation QB (respectively, UB):

(6) QT
BAQB =











B 0 . . . 0

0 λ3
. . . 0

...
. . .

. . .
...

0 . . . 0 λn











, t ≥ tj

(in the complex case, replace QT
B with U∗

B). The (2 × 2) block B has the two
eigenvalues λ1,λ2, undergoing veering. The computation of QB (UB) uses the
“smooth continuation of invariant subspaces” technique developed in [7], which is
itself based on Riccati transformations.

(iii) We continue with this block eigendecomposition, and monitor the eigenvalues of B,
until the difference of the two eigenvalues in B has become larger than mindist;
suppose that this happens at some value tf . Then, we set tj+1 = tf , and the
issue has become how to compute the full eigendecomposition of A, that is how
to obtain the eigendecomposition of the block B, at tj+1; this is done somewhat
differently in the real or complex case (see below).

We make a couple of observations.
(a) Note that we are concerned with the case of just two eigenvalues getting close on a small
time interval; nevertheless, we also allow the possibility that other pairs of eigenvalues get
to within mindist while the pair in B is, and in this case the block eigendecomposition is
appropriately modified by isolating also these other blocks.
(b) If the two eigenvalues in B remain close for all times past tj , then the block eigende-
composition is carried until the end point.

2.1. Real symmetric case. We have B ∈ Ck([tj , tj+1], R2×2), symmetric:

B =

[

a b
b c

]

,
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with distinct eigenvalues λ1 > λ2 given by:

λ1,2 =
1

2

[

a + c ±
√

∆
]

, ∆ = (a − c)2 + 4b2 .

We further have that at tj , B has diagonal form: B(tj) =
[

a(tj )=λ1(tj) b(tj )=0
b(tj )=0 c(tj)=λ2(tj )

]

.

To determine the eigendecomposition of B(tj+1), we reason as follows.

(i) We know that there is a smooth orthogonal function of eigenvectors V for B on
[tj, tj+1], starting at the identity at tj, and hence it must be a rotation:

(7) V =

[

cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

]

.

Also, in a standard way, we have

(8) V̇ = V H , H =

[

0 −θ̇
θ̇ 0

]

,

and with a little algebra, we obtain the differential equation satisfied by θ:

(9) θ̇ =
1√
∆

γ , where γ = ḃ cos(2θ) −
ȧ − ċ

2
sin(2θ) .

(ii) At tj+1, we know that the orthogonal matrix Z:

(10) Z =
1

√

(λ1 − c)2 + b2

[

λ1 − c −b
b λ1 − c

]

is such that λ1 − c ≥ 0, and

ZTB(tj+1)Z =

[

λ1(tj+1) 0
0 λ2(tj+1)

]

.

Moreover, being V a rotator, we must always have

(11) V (tj+1) = Z or V (tj+1) = −Z .

Algorithm. Our algorithm determines the way that eigenvectors rotate, and accord-
ingly fixes the sign of the approximation for V (tj+1) in (11), by looking at the sign of θ̇.
From (9), for θ(tj) = 0, we have θ̇(tj) = 1√

∆(tj)
ḃ(tj), so the sign of θ̇(tj) is that of ḃ(tj),

and the rotation will be clockwise if ḃ(tj) < 0 and counterclockwise if ḃ(tj) > 0 (the case
of ḃ(tj) = 0 would require us to look at higher derivatives, but it is of no present concern).
Now, since b(tj) = 0, to decide whether ḃ(tj) < 0 or ḃ(tj) > 0, in practice, we look at b for
a few consecutive values in between [tj, tj+1], to determine if θ is increasing or decreasing,
and then use the form of Z in (10) as the appropriate form of V (tj+1). [Note that our
choice boils down to having θ ∈ (−π/2,π/2). This is bound to be correct, especially since
we begin grouping the eigenvalues near the veering point].

The overall algorithm allows us to tackle problems with close eigenvalues, well beyond
the range of applicability of the direct eigendecomposition approach: loosely speaking, the
direct eigendecomposition approach of Algorithm 2.1 fails as soon as eigenvalues cannot
be distinguished in finite precision (see the discussion on the MinGap in section 1.2.1),
whereas the present approach, based on grouping and ungrouping of close eigenvalues,
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and on fixing the sign in (11) based upon the behavior of b, works for as long as the
function b is meaningfully distinguishable from 0, and hence its sign is unambiguously
detected.

2.2. Complex Hermitian case. In the Hermitian case, things are more complicated,
though even in this case we have a mean to alleviate the impact of veering, and the overall
algorithm is somewhat similar to that in the real symmetric case.

We have B ∈ Ck([tj , tj+1], C2×2), smooth, Hermitian:

B =

[

a b
b̄ c

]

, b = br + ibi , a, c, br, bi ∈ R ,

with distinct eigenvalues for all t ∈ [tj, tj+1], λ1 > λ2, given by:

λ1,2 =
1

2

[

a + c ±
√

∆
]

, ∆ = (a − c)2 + 4 |b|2 .

We further have B(tj) =

[

a = λ1 0
0 c = λ2

]

t=tj

, and will assume that the function b(t) (= 0

for t > tj , in particular that ḃ(tj) (= 0.
We need to characterize the unitary function U of eigenvectors of B, giving the MVD

of B, where U = I at tj . Standard arguments give:

U̇ = UH , H =

[

0 H12

−H̄12 0

]

, H12 =
(U∗ḂU)12
λ2 − λ1

,

which (since λ2 − λ1 = −
√

∆) can be rewritten as

(12) U̇ = U







0 − 1√
∆

(U∗ḂU)12

1√
∆

(U∗ḂU)21 0







.

Next, note that
d

dt
detU = (detU) trace

(

U∗dU

dt

)

= 0

and therefore detU is constant, and thus it is equal to 1. This means that U must have
the form

U =

[

α −β̄
β ᾱ

]

, |α|2 + |β|2 = 1 .

Therefore, we will look for U of the form

(13) U =

[

eiφ/2 0
0 e−iφ/2

] [

cos θ − sin θ
sin θ cos θ

]

=: D1V ,

and now we reason as follows.

(a) From (13), we observe that V is real valued; therefore, from the relation U∗BU =
[

λ1 0
0 λ2

]

=: Λ, and the form of U , we must have

(14) V T
(

D−1
1 BD1

)

V = Λ , or V T CV = Λ , with C := D−1
1 BD1 ,
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which implies that the function C must be real valued, and symmetric. This means
that the role of the phase φ is to make the complex valued function b real. Indeed,
note that if C = CT and real valued, then forming C explicitly gives that we must
have

C =

[

e−iφ/2 0
0 eiφ/2

] [

a b
b̄ c

] [

eiφ/2 0
0 e−iφ/2

]

=

[

a δ
δ c

]

,

with

(15) δ = e−iφb = eiφb̄ ∈ R .

(b) For the real symmetric problem relative to C, the two eigenvalues λ1 and λ2

undergo veering, just like in the real symmetric case of Section 2.1, and the com-
putational technique proceeds similarly to the case there. Therefore

V =
1

√

(λ1 − c)2 + δ2

[

λ1 − c −δ
δ λ1 − c

]

,

and from (13)

U =
1

√

(λ1 − c)2 + δ2

[

(λ1 − c) eiφ/2 −δ eiφ/2

δ e−iφ/2 (λ1 − c) e−iφ/2

]

.

Recalling (15) we then have

U =
1

√

(λ1 − c)2 + |b|2

[

λ1 − c −b
b̄ λ1 − c

] [

eiφ/2 0
0 e−iφ/2

]

.

(c) Finally, we need to specify the way that the angle φ brings b on the real axis (i.e.,
clockwise or counterclockwise). To do this, observe that b(t) = b(tj)+(t−tj)ḃ(tj)+
. . . , and thus (since b(tj) = 0) we look at the vector (ḃr(tj), ḃi(tj)) and rotate b(t)
onto the positive/negative real axis depending on whether ḃr(tj) is positive or
negative. In practice, we look at a few consecutive values of b to assess φ.

With this, the algorithm in the complex case is fully described. Again, by using the
grouping/ungrouping strategy described, we have been able to alleviate the impact of
veerings, and to solve problems which were unaccessible to a direct eigendecomposition
approach.

2.3. Tridiagonal case. The case of a tridiagonal function is special, and allows us to
devise taylor-made techniques in order to locate CIs. We have

(16) A =















a1 b2

b2 a2 b3
. . .

. . .
. . .

. . .
. . . bn

bn an















∈ R
n×n , or A =















a1 b2

b̄2 a2 b3
. . .

. . .
. . .

. . .
. . . bn

b̄n an















∈ C
n×n,

where the entries in the real case depend on two (real) parameters, and in the complex
case depend on three (real) parameters.
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The basic idea is to exploit Theorem 1.2: “eigenvalues coalescing can only occur if a co-
diagonal entry is 0.” Now, in the real case, this means that, for some i = 2, . . . , n, we must
have bi(x, y) = 0; generically, this defines a curve in the (x, y)-parameter space. In the
complex case, for some i = 2, . . . , n, we must have Re(bi(x, y, z)) = 0 and Im(bi(x, y, z)) =
0; again, generically, these two equations define a curve in the (x, y, z)-parameter space.

Looking at the function A, we will have n − 1 such curves. Along each of these curves,

the problem becomes reduced: A =

[

A1 0
0 A2

]

(of course, the dimensions of A1 and A2

depend on the particular index i for which bi = 0). We can thus monitor the eigenvalues
of A1 and A2 (as we move along a specific curve) to locate parameter values where they
coalesce. The latter task we perform by bisection.

In short, our task has become:

(1) Compute the curves bi = 0, i = 2, . . . , n.
(2) For each of the above curves, locate CIs (using bisection) by monitoring the eigen-

values of the decoupled blocks.

Both of the above tasks can be carried out by somewhat classical numerical methods,
of course taking care of the periodicity we have for our model tridiagonal GOE and GUE
ensembles in (1) and (2).

Remark 2.2. It would surely be convenient to have the curves bi = 0 as “functions,” so
that the bisection procedure can refine the search for CIs as desired. Now, this wish can
be fulfilled in the 2-parameter symmetric GOE case, (1), simply because the co-diagonal
function which we are zeroing can be written as R1 cos(x−α)+R2 cos(y−β) = 0, and we
can solve for one of x or y in terms of the other. However, in the complex GUE case, (2),
it is not possible to write the curves analytically; for this reason, we compute these curves
by pseudo-arclength continuation, after having located an initial point on the curve, and
we use very small continuation steps, so that the bisection procedure will later be able to
accurately locate the CIs.

3. Numerical computations: banded GOE and GUE ensembles

Our implementations follow closely the descriptions in the previous sections, with the
basic approach being to continue a complete eigendecomposition for as long as feasible,
and use a block eigendecomposition when the eigenvalues are so close that computing a
complete eigendecomposition becomes not possible.

We stress that, although we can and do assume the eigenvalues to be distinct along
the paths we follow, in practice while we continue a complete eigendecomposition they
are often so close that we witness repeated failures during integration, simply because we
reach the minimum value of the stepsize. Indeed, the goal of grouping near eigenvalues is
in order to reduce the number of failures during integration. In fact, in our experience,
a failure leads to a miscount of CIs, and repeated failures lead to a severe miscount of
the number of CIs. Thus, we need to achieve two goals: avoid reaching the minimum
allowed stepsize, and being able to ungroup the eigenvalues before having completed the
loop. These goals are controlled by two input values: hmin and mindist. We note that
when we do not group nearby eigenvalues, quite often we reach hmin, whereas if the value
used for mindist is too large, then grouped eigenvalues remain paired for the entire loop.
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In all of our experiments, we used hmin = 10−14 or 10−15. Through several experiments,
we calibrated the value of mindist and eventually chose it to be equal to 106eps, since
this value resulted in the smallest number of failures, hence in the most reliable value for
the obtained number of CIs.

Also, we used TolStep = 10−2 as the error tolerance during continuation along the
paths (see Algorithm 2.1). Finally, by looking at the form of the functions in (1) and (2),
quite clearly we can exploit the periodicity with respect to one of the parameters. For
this reason, for the GOE (1) we used a grid of 512 × 1024 square boxes on the domain
[0,π] × [0, 2π] (thus, we always integrated along segments of length ≈ 0.0061), whereas
for the GUE (2) we used a grid of 2n × 2n × n boxes for a matrix function in Cn×n on
the domain [0, 2π] × [0, 2π] × [0,π]. For each value of n, we report on results obtained by
averaging over 10 different realizations.

All computations have been performed on the FoRCE Research Computing Environ-
ment cluster available at Georgia Tech, currently equipped with 1008 six core CPUs.

Remark 3.1. In spite of the improvements we achieved by grouping, in the GOE case with
bandwidth 2 we were not able to successfully complete all the experiments for dimensions
larger than 70. We believe this is due to the fact that, in those cases, a significant number
of events (rotations) we are trying to capture occur entirely within regions whose size is
smaller then machine precision. Such behavior is consistent with the value observed for
the MinGap in Section 1.2.1.

The results in the first two tables, Table 2 and Table 3, are about the performance
of the algorithms. The most noteworthy feature in these tables is that the grouping of
eigenvalues is prevalent for small bandwidth and it becomes less needed as soon as b = 5
(for the given values of n). Another interesting observation is that the percentage of steps
rejected is much the same across the values of n and b. Finally, please observe the different
values of n for the case of b = 2 in the GOE case.

In Figure 3 we show the average number of CIs in the tridiagonal cases, for both GOE
and GUE. The approximated value of p in the power law expressing the number of CIs,
see (4), is observed to be the same (at 4 digits accuracy) for GOE and GUE cases.

Figures 4 and 5 show the number of CIs in function of the dimension and bandwidth,
for the GOE and GUE cases, respectively, with the corresponding values of p in the power
law; again, see (4). The case of b = 2 for the GOE is singled out, because of the different
values of n we used. Note that these figures report on the number of degeneracies for the
domains we used (which are half of the periodic square/cube where (1-2) are defined).

Finally, Table 4 reports the computed values of p and of the constant c in the power
law (4), cnp, for several values of b. The values reported for b = n − 1 are exact (in the
limit of large n, of course), from [24] for the GOE and [26] for the GUE.

4. Conclusions

In this work we have considered banded symmetric, respectively Hermitian, matrix
functions depending on 2, respectively 3, real parameters. Our main concern has been
that of detecting parameters’ values where the eigenvalues became equal (these are also
called degeneracies, or conical intersections).
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Table 2. The table shows (left to right): bandwidth, dimension of the
problem, average and relative standard deviation of the number of conical
intersections detected, total number of steps taken (in millions), percentage
of steps rejected, number of times that eigenvalues have been grouped per
million of steps. All values are an average over 10 realizations from the
“banded GOE” ensemble. We stress that these numbers refer to the domain
[0,π] × [0, 2π].

b dim avg CI rsd steps rej group

2

30 1547 6.8 29.0 1.4 1.9 × 102

40 3628 4.7 32.6 3.4 3.6 × 103

50 6840 4.5 39.9 5.8 3.1 × 104

60 11443 3.4 48.9 7.4 9.1 × 104

70 17329 3.4 59.7 8.2 2.1 × 105

3

50 4307 6.0 30.0 2.1 2.4 × 102

60 6893 3.9 33.0 3.8 2.8 × 103

70 10510 2.3 37.2 5.4 1.1 × 104

80 15240 3.2 44.0 7.3 3.0 × 104

90 21332 4.2 52.4 8.7 6.8 × 104

100 27605 2.8 60.6 9.9 1.1 × 105

110 37089 5.0 74.4 11.3 2.2 × 105

120 46354 2.4 86.8 12.0 3.7 × 105

4

50 3237 3.3 27.9 0.6 1.6
60 5267 4.3 28.7 1.2 22
70 7962 1.6 30.4 2.4 4.4 × 102

80 11241 3.9 32.6 3.6 2.3 × 103

90 15385 2.7 35.7 5.1 4.9 × 103

100 20620 3.3 40.2 6.9 1.1 × 104

110 26260 3.2 45.5 8.7 2.1 × 104

120 33554 3.9 52.9 10.3 5.8 × 104

5

50 2890 5.6 27.5 0.2 0.2
60 4446 3.3 27.7 0.4 1.4
70 6666 3.2 28.2 0.8 3.2
80 9234 3.3 29.0 1.5 58
90 12600 3.5 30.1 2.3 3.2 × 102

100 16715 4.4 32.1 3.6 8.6 × 102

110 20955 3.4 34.7 5.1 3.0 × 103

120 26649 3.2 37.4 6.6 7.5 × 103

As motivation of our numerical study, and application of it, we have been studying
banded GOE and GUE ensembles, and obtained evidence of a power law on the number
of degeneracies in terms of the size n of the problem, and of the bandwidth b: cnp, where
p was found to be a function of b, varying from p = 2 to p ≈ 3 for GOE ensembles as the
matrix went from being full to being tridiagonal, and going from p = 2.5 to p ≈ 3 in the
case of GUE ensembles.
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Table 3. The table shows (left to right): bandwidth, dimension of the
problem, average and relative standard deviation of the number of coni-
cal intersections detected, total number of steps taken (in millions) along
meridians and parallels, percentage of steps rejected along meridians and
parallels, number of times eigenvalues have been grouped. All values are
an average over 10 realizations from the “banded GUE” ensemble. We
emphasize that these numbers refer to the domain [0, 2π] × [0, 2π] × [0,π].

b dim avg CI rsd steps mer steps par rej mer rej par group

2

50 14807 4.0 14.4 1197.2 0.7 9.0 1.3 × 105

55 19664 4.3 19.2 1830.5 0.7 9.8 4.4 × 105

60 25087 3.1 24.9 2591.2 0.7 10.3 9.4 × 105

65 31638 3.4 31.6 3698.9 0.7 10.6 2.4 × 106

70 38683 2.7 39.6 5120.8 0.9 10.9 5.1 × 106

75 46516 3.7 48.8 6677.0 1.0 11.0 8.7 × 106

80 57294 4.0 59.1 9098.4 1.4 11.1 1.5 × 107

3

50 12511 4.4 14.2 697.3 0.4 3.5 1.4 × 101

55 16947 3.6 19.0 989.1 0.5 4.5 6.7 × 102

60 20884 2.0 24.6 1344.6 0.5 5.1 2.8 × 103

65 26493 3.5 31.3 1819.4 0.5 5.8 2.0 × 104

70 32632 2.5 39.1 2389.3 0.5 6.5 5.6 × 104

75 38644 2.5 48.1 3074.4 0.5 6.9 2.0 × 105

80 46555 2.5 58.4 3977.9 0.5 7.6 5.2 × 105

4

50 11665 3.5 14.2 599.2 0.3 0.9 0.8
55 15107 2.9 18.9 804.1 0.3 1.3 1.6
60 19107 2.3 24.5 1071.3 0.3 1.6 7.6
65 23732 2.7 31.2 1393.5 0.3 1.8 7.8
70 29147 2.7 39.0 1771.3 0.4 2.4 1.9 × 102

75 34888 2.1 47.9 2230.7 0.3 2.8 1.1 × 103

80 41972 2.0 58.2 2754.6 0.4 3.2 5.1 × 102

5

50 11428 1.6 14.2 580.0 0.3 0.3 0
55 14644 2.9 18.9 762.9 0.3 0.4 0
60 17983 4.4 24.5 1009.5 0.3 0.5 1.4
65 22668 2.4 31.1 1310.5 0.3 0.7 0
70 27447 2.8 38.9 1616.7 0.3 0.7 2
75 32981 2.1 47.8 2006.9 0.3 0.9 0.9
80 39389 2.5 58.0 2432.1 0.3 1.1 23

The outstanding task in computing these conical intersections was to overcome the dif-
ficulties caused by close (but not identical) eigenvalues, a prevalent phenomenon for small
bandwidth. We elucidated this difficulty (aka as veering of eigenvalues) and then devel-
oped algorithms that adaptively group together close eigenvalues until these veering zones
are bypassed. So doing, we managed to distinguish the occurrences of degeneracies well
beyond the limitations imposed by having close eigenvalues, before eventually succumbing
to the inherent constraints of finite precision.
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Figure 3. Average number of CIs computed in the tridiagonal GOE (cir-
cles) and GUE (square) cases. Figure also shows the slope of the linear
regression in log-log scale.

Table 4. The table collects the power laws, see (4).

bandwidth power law p coefficient c

GOE

1 2.96 0.188
2 2.85 0.191
3 2.73 0.194
4 2.66 0.193
5 2.55 0.269
...

...
...

n − 1 2 π/2

GUE

1 2.96 0.167
2 2.85 0.437
3 2.77 0.508
4 2.72 0.563
5 2.63 0.760
...

...
...

n − 1 2.5 512/(135
√

3π)
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[18] B. Parlett and C. Vömel, The spectrum of a glued matrix. SIAM J. Matrix Anal. Appl., 31-1, pp.

114–132, 2009.
[19] L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices. AMS Mathe-

matical Surveys and Monographs, v. 171, Providence RI, 2011.



24 Dieci, Papini and Pugliese

[20] J. Schenker, Eigenvector localization for random band matrices with power law band width. Comm.
Math. Phys., 290, pp.1065–1097, 2009.

[21] S. Sodin, The spectral edge of some random band matrices. Annals of Mathematics, 172, pp. 2223-
2251, 2010.

[22] A. J. Stone, Spin-Orbit Coupling and the Intersection of Potential Energy Surfaces in Polyatomic
Molecules. Proc. Roy. Soc. Lond., A351:141–150, 1976.

[23] C. A. Tracy and H. Widom, The Distributions of Random Matrix Theory and their Applications.
New Trends in Mathematical Physics, Editor: V. Sidoravicius, pp 753–765, 2009.

[24] M. Wilkinson and E.J. Austin, Densities of degeneracies and near-degeneracies. Physical Review
A, 47-4, pp. 2601–2609, 1993.

[25] P.N. Walker and M.J. Sanchez and M. Wilkinson, Singularities in the spectra of random ma-
trices. J. Mathem. Phys., 37-10, pp. 5019–5032, 1996.

[26] P.N. Walker and M. Wilkinson, Universal fluctuations of Chern integers. Physical Review Letters,
74-20, pp. 4055–4058, 1995.

[27] Q. Ye, On close eigenvalues of tridiagonal matrices. Numer. Math., 70, pp. 507–514, 1995.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 U.S.A.

E-mail address: dieci@math.gatech.edu

Dept. of Industrial Engineering, Univ. of Florence, viale G. Morgagni 40-44, 50134

Florence, Italy

E-mail address: alessandra.papini@unifi.it

Dept. of Mathematics, Univ. of Bari “A. Moro,” Via Orabona 4, 70125 Italy

E-mail address: alessandro.pugliese@uniba.it


