Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3- propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. Co2+ addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 μg/g of cell dry weight of vitamin B12, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to Co2+ ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (33.3 vs. 40.7 g/l). Compared with the fermentation carried out with pure substrates, the 1,3-PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (2.9 vs 4.3 g/l CDW) and of the glucose consumption rate were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B12 using industry byproducts.
Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016
RICCI, Maria Antonietta;PISANO, ISABELLA;Palmieri, Luigi;de Angelis, Maria;Agrimi, Gennaro
2015-01-01
Abstract
Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3- propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. Co2+ addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 μg/g of cell dry weight of vitamin B12, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to Co2+ ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (33.3 vs. 40.7 g/l). Compared with the fermentation carried out with pure substrates, the 1,3-PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (2.9 vs 4.3 g/l CDW) and of the glucose consumption rate were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B12 using industry byproducts.File | Dimensione | Formato | |
---|---|---|---|
JMB025-06-18_FDOC_1 (1).pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.