Conversational Recommender Systems assist online users in their information-seeking and decision making tasks by supporting an interactive process with the aim of finding the most appealing items according to the user preferences. Unfortunately, collecting dialogues data to train these systems can be labour-intensive, especially for data-hungry Deep Learning models. Therefore, we propose an automatic procedure able to generate plausible dialogues from recommender systems datasets.

An automatic procedure for generating datasets for conversational recommender systems

Basile, Pierpaolo;Semeraro, Giovanni;Caputo, Annalina
2017-01-01

Abstract

Conversational Recommender Systems assist online users in their information-seeking and decision making tasks by supporting an interactive process with the aim of finding the most appealing items according to the user preferences. Unfortunately, collecting dialogues data to train these systems can be labour-intensive, especially for data-hungry Deep Learning models. Therefore, we propose an automatic procedure able to generate plausible dialogues from recommender systems datasets.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/213161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact