Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 μm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented.
Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective
Ragni, Roberta;Vona, Danilo;Farinola, Gianluca M.
2018-01-01
Abstract
Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 μm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented.File | Dimensione | Formato | |
---|---|---|---|
Ragni_et_al-2017-Advanced_Materials.pdf
non disponibili
Descrizione: Articolo Principale
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.39 MB
Formato
Adobe PDF
|
5.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.