While all kinds of mixed data—from personal data, over panel and scientific data, to public and commercial data—are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leaf distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any distribution and permits efficient learning and inference. Our experiments show that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.

Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains

Antonio Vergari;Nicola Di Mauro;Floriana Esposito;
2018-01-01

Abstract

While all kinds of mixed data—from personal data, over panel and scientific data, to public and commercial data—are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leaf distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any distribution and permits efficient learning and inference. Our experiments show that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.
2018
978-1-57735-800-8
File in questo prodotto:
File Dimensione Formato  
molina18aaai.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/209234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 31
social impact