We consider the reduced dynamics of a small quantum system in interaction with a reservoir when the initial state is factorized. We present a rigorous derivation of a GKLS master equation in the weak-coupling limit for a generic bath, which is not assumed to have a bosonic or fermionic nature, and whose reference state is not necessarily thermal. The crucial assumption is a reservoir state endowed with a mixing property: the n-point connected correlation function of the interaction must be asymptotically bounded by the product of two-point functions (clustering property).
On the Derivation of the GKLS Equation for Weakly Coupled Systems
Facchi, Paolo;Ligabò, Marilena;
2017-01-01
Abstract
We consider the reduced dynamics of a small quantum system in interaction with a reservoir when the initial state is factorized. We present a rigorous derivation of a GKLS master equation in the weak-coupling limit for a generic bath, which is not assumed to have a bosonic or fermionic nature, and whose reference state is not necessarily thermal. The crucial assumption is a reservoir state endowed with a mixing property: the n-point connected correlation function of the interaction must be asymptotically bounded by the product of two-point functions (clustering property).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.