This paper describes the UNIBA team participation in the SENTIPOLC task at EVALITA 2014. We propose a supervised approach relying on keyword, lexicon and micro-blogging features as well as representation of tweets in a word space. Our system ranked 1st in both the subjectivity and polarity detection subtasks. As a further contribution, we participated in the unconstrained run, investigating the use of co-training to automatically enrich the labelled training set.

UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic features

BASILE, PIERPAOLO;NOVIELLI, NICOLE
2014-01-01

Abstract

This paper describes the UNIBA team participation in the SENTIPOLC task at EVALITA 2014. We propose a supervised approach relying on keyword, lexicon and micro-blogging features as well as representation of tweets in a word space. Our system ranked 1st in both the subjectivity and polarity detection subtasks. As a further contribution, we participated in the unconstrained run, investigating the use of co-training to automatically enrich the labelled training set.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/195405
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact