Summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. In this position paper we address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNN). Moreover, we discuss the idea of combining RNNs and probabilistic models in a unified way in order to incorporate prior knowledge, such as linguistic features. We believe that this approach can obtain better performance than the state-of-The-Art models for generating well-formed summaries.

Improving neural abstractive text summarization with prior knowledge. Position paper

ROSSIELLO, GAETANO;BASILE, PIERPAOLO;SEMERARO, Giovanni;
2017-01-01

Abstract

Summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. In this position paper we address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNN). Moreover, we discuss the idea of combining RNNs and probabilistic models in a unified way in order to incorporate prior knowledge, such as linguistic features. We believe that this approach can obtain better performance than the state-of-The-Art models for generating well-formed summaries.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/194879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact