ZnO nanoparticles were prepared by a green electrochemical synthesis method applying low current densities followed by a thermal treatment. Sodium polystyrene sulphonate (PSS) was used as stabilizer in the electrolytic aqueous medium due to its biocompatibility and stability. The as-prepared nanocolloids were then annealed to improve their stability, and then converted via hydroxide species into stoichiometric oxide. Different calcination temperatures were studied. ZnO@PSS nanomaterials were deposited onto SiO2/Si substrates, in part in combination with an organic semiconductor layer to evaluate their influence on organic field effect transistors (OFETs). All nanomaterials and composite layers were characterized by morphological and spectroscopic techniques. Promising results regarding the use of ZnO@PSS in OFETs could be demonstrated.
Electrosynthesized Polystyrene Sulphonate-Capped Zinc Oxide Nanoparticles as Electrode Modifiers for Sensing Devices
SPORTELLI, MARIA CHIARA;PICCA, ROSARIA ANNA;MANOLI, KYRIAKI;TORSI, Luisa;CIOFFI, NICOLA
2014-01-01
Abstract
ZnO nanoparticles were prepared by a green electrochemical synthesis method applying low current densities followed by a thermal treatment. Sodium polystyrene sulphonate (PSS) was used as stabilizer in the electrolytic aqueous medium due to its biocompatibility and stability. The as-prepared nanocolloids were then annealed to improve their stability, and then converted via hydroxide species into stoichiometric oxide. Different calcination temperatures were studied. ZnO@PSS nanomaterials were deposited onto SiO2/Si substrates, in part in combination with an organic semiconductor layer to evaluate their influence on organic field effect transistors (OFETs). All nanomaterials and composite layers were characterized by morphological and spectroscopic techniques. Promising results regarding the use of ZnO@PSS in OFETs could be demonstrated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.