Object indexing is a challenging task that enables the retrieval of relevant images in pictorial databases. In this paper, we present an incremental indexing approach of picture objects based on clustering of object shapes. A semisupervised fuzzy clustering algorithm is used to group similar objects into a number of clusters by exploiting a-priori knowledge expressed as a set of pre-labeled objects. Each cluster is represented by a prototype that is manually labeled and used to annotate objects. To capture eventual updates that may occur in the pictorial database, the previously discovered prototypes are added as pre-labeled objects to the current shape set before clustering. The proposed incremental approach is evaluated on a benchmark image dataset, which is divided into chunks to simulate the progressive availability of picture objects during time.

Incremental indexing of objects in pictorial databases

CASTELLANO, GIOVANNA;FANELLI, Anna Maria;TORSELLO, MARIA ALESSANDRA
2015-01-01

Abstract

Object indexing is a challenging task that enables the retrieval of relevant images in pictorial databases. In this paper, we present an incremental indexing approach of picture objects based on clustering of object shapes. A semisupervised fuzzy clustering algorithm is used to group similar objects into a number of clusters by exploiting a-priori knowledge expressed as a set of pre-labeled objects. Each cluster is represented by a prototype that is manually labeled and used to annotate objects. To capture eventual updates that may occur in the pictorial database, the previously discovered prototypes are added as pre-labeled objects to the current shape set before clustering. The proposed incremental approach is evaluated on a benchmark image dataset, which is divided into chunks to simulate the progressive availability of picture objects during time.
2015
1891706381
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/184583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact