In this work we consider Hermitian matrix-valued functions of 3 (real) parameters, and are interested in generic coalescing points of eigenvalues, conical intersections. Unlike our previous works [L. Dieci, A. Papini and A. Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters, SIAM J. Matrix Anal. Appl., 2013] and [L. Dieci and A. Pugliese, Hermitian matrices depending on three parameters: Coalescing eigenvalues, Linear Algebra Appl., 2012], where we worked directly with the Hermitian problem and monitored variation of the geometric phase to detect conical intersections inside a sphere-like region, here we consider the following construction: (i) Associate to the given problem a real symmetric problem, twice the size, all of whose eigenvalues are now (at least) double, (ii) perturb this enlarged problem so that, generically, each pair of consecutive eigenvalues coalesce along curves, and only there, (iii) analyze the structure of these curves, and show that there is a small curve, nearly planar, enclosing the original conical intersection point. We will rigorously justify all of the above steps. Furthermore, we propose and implement an algorithm following the above approach, and illustrate its performance in locating conical intersections.

Hermitian matrices of three parameters: Perturbing coalescing eigenvalues and a numerical method

PUGLIESE, Alessandro
2015-01-01

Abstract

In this work we consider Hermitian matrix-valued functions of 3 (real) parameters, and are interested in generic coalescing points of eigenvalues, conical intersections. Unlike our previous works [L. Dieci, A. Papini and A. Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters, SIAM J. Matrix Anal. Appl., 2013] and [L. Dieci and A. Pugliese, Hermitian matrices depending on three parameters: Coalescing eigenvalues, Linear Algebra Appl., 2012], where we worked directly with the Hermitian problem and monitored variation of the geometric phase to detect conical intersections inside a sphere-like region, here we consider the following construction: (i) Associate to the given problem a real symmetric problem, twice the size, all of whose eigenvalues are now (at least) double, (ii) perturb this enlarged problem so that, generically, each pair of consecutive eigenvalues coalesce along curves, and only there, (iii) analyze the structure of these curves, and show that there is a small curve, nearly planar, enclosing the original conical intersection point. We will rigorously justify all of the above steps. Furthermore, we propose and implement an algorithm following the above approach, and illustrate its performance in locating conical intersections.
File in questo prodotto:
File Dimensione Formato  
EDITORIALE_Mathematics-of-Computation-2015.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 409.65 kB
Formato Adobe PDF
409.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IRIS_DiPu4_Submitted.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 830.01 kB
Formato Adobe PDF
830.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/181596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact