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HERMITIAN MATRICES OF THREE PARAMETERS:
PERTURBING COALESCING EIGENVALUES

AND A NUMERICAL METHOD

LUCA DIECI AND ALESSANDRO PUGLIESE

Abstract. In this work we consider Hermitian matrix valued functions of 3 (real) pa-
rameters, and are interested in generic coalescing points of eigenvalues, conical intersec-
tions. Unlike our previous works [7, 4], where we worked directly with the Hermitian
problem and monitored variation of the geometric phase to detect conical intersections
inside a sphere-like region, here we consider the following construction: (i) Associate
to the given problem a real symmetric problem, twice the size, all of whose eigenvalues
are now (at least) double, (ii) perturb this enlarged problem so that –generically– each
pair of consecutive eigenvalues coalesce along curves, and only there, (iii) analyze the
structure of these curves, and show that there is a small curve, nearly planar, enclosing
the original conical intersection point. We will rigorously justify all of the above steps.
Furthermore, we propose and implement an algorithm following the above approach, and
illustrate its performance in locating conical intersections.

Notation. Below, ⌦ ⇢ R3 indicates an open region of R3 di↵eomorphic to the open
unit ball; ⇠ = (↵,�, �) 2 ⌦ will indicate a general point in ⌦. The metric is the Euclidean
metric. We write A 2 C

k(⌦,Cn⇥n), k � 1, to indicate a smooth complex matrix-valued
function defined on ⌦ and further A 2 C

! if the dependence on parameter(s) is analytic.
We write A

⇤ for the conjugate transpose of a matrix A, and have A = A
⇤ for a Hermitian

matrix. The word Hermitian will imply complex valued entries. Similarly, the word
symmetric will be restricted to matrices with real entries. With �(A) we indicate the set
of eigenvalues (repeated by multiplicity) of A.

1. Introduction

In this paper we consider a Hermitian matrix depending on three real parameters,
↵,�, �:

A = B + iC , A
⇤ = A 2 Cn⇥n

, B, C 2 Rn⇥n
, so that B

T = B , C
T = �C ,

where A 2 C
k(⌦,Cn⇥n), k � 1. Naturally, the eigenvalues of A can be taken as continuous

functions of ⇠ 2 ⌦, and ordered as µ1(⇠) � µ2(⇠) � · · · � µn(⇠), for all ⇠ 2 ⌦, which we
can assume to be always the case. It is well known that, in general, the eigenvalues of A
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do not enjoy any extra smoothness. In fact –generically– they are not di↵erentiable where
they coalesce, regardless of their labeling (ordering). This is in sharp contrast to the case
of Hermitian functions depending on one real parameter, where an important theorem of
Rellich (see [12]) tells us that the eigenvalues can be chosen to remain at least C1 functions
even if they coalesce, though of course one must allow for eigenvalues to exchange their
ordering upon coalescing. However, as we said, in the present multiparameter case, when
eigenvalues coalesce they are, generically, merely continuous functions (irrespective of their
labeling), and come together at the coalescing point in a double cone like fashion, hence
the name of conical intersection points (CIs, for short) given to parameter values where
eigenvalues coalesce 1. This phenomenon has been studied extensively, and we refer to [7]
for background on the theory, references to this topic, and justification of the terminology
adopted in the present work. Presently, we simply recall that, for a Hermitian matrix
function, having a pair of coalescing eigenvalues is a real codimension 3 phenomenon; that
is, generically: one needs three real parameters to observe it, the phenomenon occurs
at isolated parameter values, and it persists upon perturbation (of course, occurring at
perturbed parameter values). It follows that it is a generic property for a Hermitian
function of three real parameters to have eigenvalues that coalesce at isolated points given
by CIs. Likewise, for real symmetric matrix functions, having coalescing eigenvalues is
a codimension 2 phenomenon (a fact known since [22]), and therefore, generically, a real
symmetric function of two real parameters will have coalescing eigenvalues at isolated CI
points, and one of three real parameters will have coalescing eigenvalues along curves of CI
points in parameter space. We stress that, because of the codimension of the phenomena
under interest, one cannot locate CI’s by working with one parameter at a time, as curves
of eigenvalues of a symmetric/Hermitian function will generically not intersect.

Remark 1.1. Locating CIs is not only an interesting and challenging task, but it is also a
problem of great relevance in the physical and engineering sciences. For example, it plays
a key role in chemical physics [1, 2, 24], in random matrix theory [23], and in structural
dynamics [8, 18], among others.

From the mathematical point of view, given the singularity nature of generic CIs, it is
natural to study what happens for a perturbed problem. Of course, perturbing within the
class of Hermitian functions will merely change the location (in parameter space) of the
CI point. For this reason, much in the spirit of singularity theory, the approach recently
discussed in [3, 14, 15, 16] has lead the authors to a generic non-Hermitian perturbation.
In this case, a generic CI point gets replaced by a ring of so-called “exceptional points,”
whereby one no longer has a full basis of eigenvectors. Unfortunately, the non-Hermitian,
non-diagonalizable, problem is harder to treat numerically than the symmetric eigenprob-
lem. For this reason, our approach is to study a perturbed problem where su�cient
symmetry is retained in a way that is conducive to the development of a robust and stable
computational method.

1In the Physics literature, these points are often called diabolical points or degeneracies.
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Our interest in this paper is two-fold: (a) To study a symmetric eigenproblem, which
results from a perturbation of the symmetric matrix associated to the original Hermitian
one, so that the original CIs are now replaced by curves of CI points, and rigorously study
the structure of these curves near a CI of the original Hermitian problem; and, based upon
this mathematical theory, (b) to propose a novel technique to localize and approximate
conical intersection points of the original Hermitian function.

In [4], we developed a numerical method to approximate CIs, based on the theoretical
development of [7], and ultimately based on the remarkable geometrical insight of Stone
and Berry; see [21, 2]. The approach considered in this paper, instead, is perturbative in
nature and is based on the idea below.

1.1. Basic Idea/Approach.

(1) Enlarge A to a symmetric real-valued problem twice the size:

(1.1) M =


B �C

C B

�
,

so that M = M
T
2 C

k(⌦,R2n⇥2n).
• Concern. Note that the function M is a very special type of symmetric function
of three parameters, since all eigenvalues of M appear in repeated pairs:


B �C

C B

� 
V W

W �V

�
=


V W

W �V

� 
� 0
0 �

�
.

In particular, if ⌫1 = ⌫2 � ⌫3 = ⌫4 � · · · � ⌫2n�1 = ⌫2n indicate the eigenvalues
of M , then ⌫2k�1 = ⌫2k = µk, k = 1, . . . , n, for all x 2 ⌦, and at the isolated
parameter values where two eigenvalues of the original problem coalesced (say,
µ1 = µ2), now we must have a quadruplet of coalescing eigenvalues of M (say,
⌫1 = ⌫2 = ⌫3 = ⌫4); these types of coalescings are highly nongeneric properties for
symmetric functions of three parameters.

(2) Perturb M (see below for how the perturbation matrix is chosen):

(1.2) M ! M + "E , E
T = E ,

where E is a constant matrix of norm 1 and " is a small (positive) number. The
matrix E is needed so that for the function M + "E the eigenvalues coalesce along
curves (a generic property for symmetric functions of three parameters). That is,
if �1 � �2 � · · · � �2n indicate the eigenvalues of M + "E, now we will generically
have

�1 = �2, �2 = �3, �3 = �4, . . . ,

along non-intersecting curves in parameter space.
(3) We want to rigorously show that –locally– breaking of the CI of the original prob-

lem, that is of the quadruplet of coalescing eigenvalues of M , gives three curves for
the perturbed problem, and that these curves come near one another around the
original CI. In Figure 1 (which is relative to the results of a practical computation),
we show the following situation:
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(i) �1 = �2 �! “red curve;”
(ii) �3 = �4 �! “blue curve;”
(iii) �2 = �3 �! “green curve.”

Figure 1. The red, blue, and green, curves.

Our main theoretical goal in this paper will be to rigorously show that Figure 1 is
qualitatively correct, and the green curve is a (nearly planar) small closed curve
encircling the blue and red curves near the original CI.

(4) Based upon the theoretical development above, we will propose a new method to
approximate the CI points. In much simplified terms, the method will consist in
using a path-following algorithm to follow the red and blue curves while monitor-
ing also points on the green curve, as well as other branches of red/blue curves.
Eventually, a refinement procedure will be used to approximate the CI point start-
ing from the point(s) which have been detected on the green curve(s). Details are
in Section 4.

A plan of this paper is as follows. In the next Section, we will show that, near an original
CI point, the structure of M and of the perturbation E can be taken of a simplified form,
so that locally the problem is reduced to a (generic) (4 ⇥ 4) symmetric problem of the
type M + "E, with M and E of an appropriate form (see Theorem 2.10); we note that, in
general, now both the (4⇥ 4) function M and the “perturbation” E will depend on all of
the problem’s parameters. [We emphasize right away that this simplified form is only for
the purpose of theoretical analysis, in the algorithmic development we will never explicitly
build these simplified forms.] In Section 3, we first show how for the (4 ⇥ 4) perturbed
symmetric problem M + "E we can justify the claim above about the red, blue, and green
curves, under the further assumption that the (4⇥ 4) perturbation matrix E is constant,
and M is independent of ". Then, we prove that the situation for the general problem is
e↵ectively much the same. In Section 4 we propose a new technique to approximate CI
points of the original problem by following the approach outlined in Section 1.1, and show
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its performance on an Example. Finally, in Section 5 we give concluding remarks, and in
the Appendix we give complete proofs of the key result, Theorem 2.10, used in Section 3.

2. Simplify Structure

Here we show that, near a CI point, the structure of the function M and of the pertur-
bation E in (1.2) can be chosen of an appropriately simplified form.

In what follows, we assume that ⇠ 2 ⌦ is an isolated coalescing point for A. Without
loss of generality, we assume µ1(⇠) = µ2(⇠). Furthermore, since ⇠ is an isolated coalescing
point, we let R to be a parallelepiped, containing ⇠, and inside which there are no further
coalescings of eigenvalues.

2.1. Simplify M . First, we simplify M , thanks to the block-diagonalization result of
Hsieh and Sibuya (see [11], and also [9]).

Theorem 2.1. Let A = A
⇤
2 C

k(⌦,Cn⇥n), k � 1, A = B + iC, and let M =


B �C

C B

�
.

In R, there exists orthogonal Q 2 C
k(R,R2n⇥2n), such that

(2.1) Q
T
MQ =


M1 0
0 M2

�
, M1 2 R4⇥4

, M2 2 R2n�4,2n�4
,

and further �(M1) \ �(M2) = ; and the coalescing quadruplet of �(M) (i.e., ⌫1 = ⌫2 =
⌫3 = ⌫4 which equals µ1 = µ2) is in �(M1).

Proof. We use the orthogonal function Z, guaranteed to exist from [11], such that Z⇤
AZ =

A1 0
0 A2

�
, A1 2 C2⇥2, A2 2 Cn�2,n�2, and �(A1)\�(A2) = ; in R, with �(A1) = {µ1, µ2}.

Further, A⇤
k = Ak, k = 1, 2, and so Ak = Bk + iCk, BT

k = Bk, CT
k = �Ck, k = 1, 2. In

particular, B1 =


a b

b d

�
, C1 =


0 c

�c 0

�
. Now, if Z = U + iV , then


U V

V �U

�T 
B �C

C B

� 
U V

V �U

�
=

2

664

B1 0 C1 0
0 B2 0 C2

�C1 0 B1 0
0 �C2 0 B2

3

775 .

Now, take the permutation matrix ⇧, ⇧ =

"
I2 0 0 0

0 0 In�2 0

0 I2 0 0

0 0 0 In�2

#
, and observe that

⇧T


U V

V �U

�T 
B �C

C B

� 
U V

V �U

�
⇧ =

2

664

B1 C1 0 0
�C1 B1 0 0
0 0 B2 C2

0 0 �C2 B2

3

775 .

So, the claim is verified with the matrix Q =


U V

V �U

�
⇧, which is clearly orthogonal,

since Z
⇤
Z = In. ⇤
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At this point, without loss of generality, we can assume that the coalescing point for A
occurs at the origin, (↵,�, �) = (0, 0, 0) and that no other coalescing of eigenvalues of A
occur at the origin nor in a neighborhood of it. So, for M1 we have the structure

M1 =

2

664

a b 0 c

b d �c 0
0 �c a b

c 0 b d

3

775 .

We can further simplify this, by shifting it by a+d
2

: M1 ! M1�
a+d
2

I and obtain a modified
M1 with zero trace:

(2.2) M1 =

2

664

a�d
2

b 0 c

b
d�a
2

�c 0
0 �c

a�d
2

b

c 0 b
d�a
2

3

775 .

Definition 2.2. We say that (↵,�, �) = (0, 0, 0) is a generic CI for M1 if the system8
<

:

a� d = 0
b = 0
c = 0

is satisfied at (↵,�, �) = (0, 0, 0), and the Jacobian

J =

2

4
@↵((a� d)/2) @�((a� d)/2) @�((a� d)/2)

@↵b @�b @�b

@↵c @�c @�c

3

5

(0,0,0)

is invertible.

Remark 2.3. We point out (see [7]) that (0, 0, 0) is a generic CI for M1 if and only if it
is a generic CI for the Hermitian function


a�d
2

b+ ic

b� ic �
a�d
2

�
.

Henceforth, we will always work under the following assumption:

Assumption 2.4. We assume that ⇠ = (0, 0, 0) is an isolated generic CI point for A, with
µ1(⇠) = µ2(⇠).

Finally, since the above Jacobian J is invertible, on account of the inverse function
theorem we change variables in M1, and let:

x =
a� d

2
, y = b , z = �c .

Summary 2.5. In conclusion, in a neighborhood of the origin, we can assume to be

working with M =


M1 0
0 M2

�
, �(M1) \ �(M2) = ;, and the following simplified function
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M1:

(2.3) M1 =

2

664

x y 0 �z

y �x z 0
0 z x y

�z 0 y �x

3

775 ,

where x, y, z are C
k functions of (↵,�, �) in a neighborhood of the origin, vanish at the

origin, and can be used as a local coordinates system.

2.2. Choosing E. Here we discuss the type of perturbation matrix E that we will consider
when taking M + "E. [Step (2) of the outline given in Section 1.1].

We will take the perturbation matrix to be of the type

(2.4) E =


E1 E2

E2 �E1

�
, E

T
1 = E1 , E

T
2 = E2 , E1,2 2 Rn⇥n

.

Remark 2.6. Clearly (2.4) is not the most general form of a symmetric matrix. However,
we have the freedom to choose E, and we elect to choose it as in (2.4). Moreover, in our
context, E essentially is equivalent to having taken a general perturbation. In fact, suppose

we take a general symmetric perturbation matrix E = E
T =


E11 E12

E
T
12

E22

�
with all blocks

being in Rn⇥n. Then, we can rewrite

E =


E1 + F1 E2 � F2

E2 + F2 �E1 + F1

�
, where

E1 =
E11 � E22

2
, E2 =

E12 + E
T
12

2
, F1 =

E11 + E22

2
, F2 =

E
T
12

� E12

2
.

Looking at M + E, with M as in (1.1), we can rewrite

M + E =


B + F1 �(C + F2)
C + F2 B + F1

�
+


E1 E2

E2 �E1

�
,

and the first of these two matrices on the right-hand-side has the same structure of M ,
and can thus be absorbed into it.

Remark 2.7. Notice that we cannot interpret E in (2.4) as coming from a perturbation
(in Cn⇥n) of the original A. This observation supports our claim in the Introduction that
we are not perturbing the original Hermitian problem. Ultimately, this is the reason why
we are able to work with a symmetric function.

Before proceeding, we give a simple result on the spectrum of M + E.

Lemma 2.8. For M as in (1.1) and E as in (2.4), we always have �(M+E) = �(M�E),
and therefore �(M + E) = ��(�M + E).
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Proof. We have

(M+E)


v

w

�
= �


v

w

�
()

⇢
(B + E1)v � (C � E2)w = �v

(C + E2)v + (B � E1)w = �w
() (M�E)


w

�v

�
= �


w

�v

�
.

The final inference follows from this, since �(M+E) = ��(�M�E) = ��(�M+E). ⇤

2.3. Blocking the perturbed problem. Next, suppose we have blocked M with a
function Q as in Section 2.1, see Theorem 2.1 and (2.1), and let E be a matrix of the
structure given in (2.4). Then, we have the following result.

Lemma 2.9. Let Q be as in (2.1), and E =


E1 E2

E2 �E1

�
, ET

j = Ej, j = 1, 2. Then,

Q
T
EQ =

 bE F

F
T

H

�
, bE =

 bE11
bE12

bE12 � bE11

�
, bET

11 = bE11 2 R2⇥2
, bET

12 = bE12 2 R2⇥2
,

H =


H11 H12

H12 �H11

�
, H

T
11 = H11 2 Rn�2,n�2

, H
T
12 = H12 2 Rn�2,n�2

,

F =


F11 F12

F12 �F11

�
, F11, F12 2 R2,n�2

.

Proof. Recall (see the proof of Theorem 2.1) that the function Q has the form Q =
U V

V �U

�
⇧, where Z = U + iV is unitary. Therefore,


U V

V �U

�T 
E1 E2

E2 �E1

� 
U V

V �U

�
=:

 bE1
bE2

bE2 � bE1

�
, bET

1 = bE1 , bET
2 = bE2 .

Using the block permutation ⇧ completes the proof. ⇤

So, we really have the following structure:

(2.5) Q
T (M + "E)Q =


M1 + " bE "F

"F
T

M2 + "H

�
,

where M1, M2, bE, F and H are as in Lemma 2.9, and –by construction– they are C
k

functions in a neighborhood of the origin.
The essential ingredient to obtain the sought result, that is to validate Figure 1, is

the following Theorem, where we smoothly block-diagonalize the function in (2.5), while
retaining separate spectra for the diagonal blocks.

Theorem 2.10. Let M1, M2, bE, F and H be as in (2.5), with M1, M2 as in Summary
2.5, and bE, F and H as in Lemma 2.9. Then, there exists "0 > 0 su�ciently small, and
a neighborhood U0 of the origin in R3, such that for " 2 J0 = (�"0, "0), and (↵,�, �) 2 U0

the following hold.
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There exist near the identity Q, orthogonal, smooth in (↵,�, �) 2 U0, and analytic for
" 2 J0, such that

Q
T


M1 + " bE "F

"F
T

M2 + "H

�
Q =

"
fM1 0

0 fM2

#

where

fM1 = [M1 +
1X

k=1

"
2k
E2k] + "[ bE +

1X

k=1

"
2k
E2k+1] ,

fM2 = [M2 +
1X

k=1

"
2k
H2k] + "[H +

1X

k=1

"
2k
H2k+1] ,

(2.6)

and �(fM1) \ �(fM2) = ;.
Moreover, for all k = 1, 2, . . . , the functions E2k all have the same structure as M1

does, and the functions E2k+1 all have the same structure as bE itself. Similarly for the
functions H2k and H2k+1. All of these functions are C

k functions of (↵,�, �) in U0, and
are analytic in ".

More precisely, we can write fM1 = fM + " eE, where

fM =

2

6664

e↵ e� 0 �e�
e� e� e� 0

0 e� e↵ e�
�e� 0 e� e�

3

7775
, and

eE =

 eE1
eE2

eE2 � eE1

�
, eE1 =

"
ea eb
eb ec

#
, eE2 =

"
ed ee
ee ef

#
,

(2.7)

where ea,eb,ec, ed, ee, ef , as well as e↵, e�, e�, e�, are all Ck functions of (↵,�, �) in U0, and are
analytic in "; indeed, all of these functions admit an expansion in powers of "

2, say
ea = a+

P1
k=1

ak"
2k, and similarly for the other functions, for " 2 J0.

Proof. See Appendix. ⇤

3. The green, blue and red curves

Our concern is to study the geometrical structure of the set of points where eigenvalues
of M + "E coalesce. Relatively to this problem, we are now going to validate Figure 1,
that is the structure of the blue, red, and green curves.
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3.1. Simplified M, constant E. We begin by considering the problem under the follow-
ing simplifying assumption: “we assume M to be as in (2.3), and E is constant”. That
is:

M =


M1 M2

�M2 M1

�
, M1 =


x y

y �x

�
, M2 =


0 �z

z 0

�
,

E =


E1 E2

E2 �E1

�
, E1 =


a b

b c

�
, E2 =


d e

e f

�
,

(3.1)

where a, b, c, d, e, f 2 R.
So, let M and E be as in (3.1), and let �1 � �2 � �3 � �4 be the eigenvalues of M+"E.

The next Lemma gives a result on the eigenvalues/eigenvectors for E of the previous form
and it will be useful to further simplify the problem.

Lemma 3.1. Consider any symmetric matrix E 2 R4⇥4 of the form in (3.1):

E =


E1 E2

E2 �E1

�
, E1 =


a b

b c

�
, E2 =


d e

e f

�
.

Then, the eigenvalues of E are of the form � = {±1,±2}, where we can assume 1 �

2 � 0. Moreover, if


v

w

�
(with v, w 2 R2) is an eigenvector associated to the eigenvalue

� = 1 (or � = 2), then


�w

v

�
is an eigenvector associated to ��.

Proof. Let � be an eigenvalue of E, and E


v

w

�
= �


v

w

�
. From the form of E, this means

⇢
E1v + E2w = �v

E2v � E1w = �w
()


E1 E2

E2 �E1

� 
�w

v

�
= ��


�w

v

�
.

⇤
The following is a consequence of Lemma 3.1.

Corollary 3.2. Let 1 � 2 � �2 � �1 be the eigenvalues of E in Lemma 3.1. Then
an orthogonal matrix Q of eigenvectors of E can be chosen as

Q =


X �Y

Y X

�
, X, Y 2 R2⇥2

, X
T
Y = Y

T
X , X

T
X + Y

T
Y = I2 .

Proof. Just take the first two columns of Q to be orthogonal eigenvectors relative to
1,2. ⇤

The next result is the key to the final simplified form with which we work and it says
that the matrix Q of Corollary 3.2 tranforms M in a form that is like M itself.

Lemma 3.3. Let E be as in Lemma 3.1, let Q be the matrix of Corollary 3.2 which

diagonalizes E: Q
T
EQ =

"
1 0 0 0

0 2 0 0

0 0 �1 0

0 0 0 �2

#
, and let M be the function in (3.1): M =



PERTURBATION OF CONICAL INTERSECTIONS 11

"
x y 0 �z
y �x z 0

0 z x y
�z 0 y �x

#
. Then, QT

MQ has the form

(3.2) Q
T
MQ =

2

664

� ⌘ 0 �⇣

⌘ �� ⇣ 0
0 ⇣ � ⌘

�⇣ 0 ⌘ ��

3

775 .

In other words, QT
MQ has the same form of M for the new variables (�, ⌘, ⇣).

Proof. An explicit computation with the given forms of Q and M gives for the blocks of
Q

T
MQ:

(QT
MQ)11 = X

T
M1X +X

T
M2Y � Y

T
M2X + Y

T
M1Y ,

(QT
MQ)22 = Y

T
M1Y � Y

T
M2X +X

T
M2Y +X

T
M1X ,

(QT
MQ)12 = �X

T
M1Y +X

T
M2X + Y

T
M2Y + Y

T
M1X ,

(QT
MQ)21 = X

T
M1Y �X

T
M2X � Y

T
M2Y � Y

T
M1X .

From these, recalling that M
T
1

= M1 and M
T
2

= �M2, we get that (QT
MQ)12 =

�[(QT
MQ)12]T = [(QT

MQ)21]T = �(QT
MQ)21 and thus (QT

MQ)12 =
h
0 �⇣
⇣ 0

i
. Also,

we have that (QT
MQ)11 = [(QT

MQ)11]T = (QT
MQ)22 from which it follows that

(QT
MQ)11 =

⇥ � ⌘
⌘ ⇠

⇤
. The final fact, that ⇠ = ��, is a consequence of the fact that

M has zero trace, and thus so does QT
MQ. ⇤

Remark 3.4. We point out that, within the vector space of symmetric matrices E of
the form considered in Lemma 3.1, those having distinct eigenvalues form an open and
dense set. Openness is clear, since, if a matrix E as in Lemma 3.1 has distinct eigenvalues,
continuity of the eigenvalues with respect to the entries of the matrix will ensure that all
su�ciently close matrices will also have distinct eigenvalues. To validate density, suppose
that a matrix E has a pair of coalescing eigenvalues, and consider its matrix Q of eigen-
vectors as given in Corollary 3.2. Then, we can choose "1, "2 > 0, and arbitrarily small,
so that

E +Q

2

664

"1 0 0 0
0 "2 0 0
0 0 �"1 0
0 0 0 �"2

3

775Q
T

has the same structure of E and has distinct eigenvalues.

Summary 3.5. In light of Corollary 3.2 and Lemma 3.3, we can therefore consider the
following structure for the function M and the matrix E (cfr. with Summary 2.5):

(3.3) M =

2

664

x y 0 �z

y �x z 0
0 z x y

�z 0 y �x

3

775 , E =

2

664

a 0 0 0
0 b 0 0
0 0 �a 0
0 0 0 �b

3

775 , a � b � 0 ,
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where (x, y, z) are C
k functions of (↵,�, �) in a neighborhood of the origin, vanish at the

origin, and can be used as a local coordinates system.

Here below we give results on the locus of points where �2 = �3, and where �1 = �2

and �3 = �4, in terms of the coordinate system (x, y, z). We will show that –under
generic conditions on the coe�cients of E– the set {(x, y, z) : �2 = �3} is an ellipse
(the green curve), lying in a certain plane. Moreover, the sets {(x, y, z) : �1 = �2} and
{(x, y, z) : �3 = �4} (the blue and red curves) will be shown to be branches of hyperbola,
lying in a plane perpendicular to that of the ellipse. Naturally, these are not exactly planes
when viewed in the original (↵,�, �) coordinates.

3.1.1. The Ellipse. Next, we look at the set of points where �2 = �3.

Theorem 3.6. Let M and E be as in (3.3) with b > 0, and let �1 � �2 � �3 � �4 be the
ordered eigenvalues of M + "E, " > 0. Then, when z = 0, �2 = �3 along the ellipse

(3.4)

✓
2x

a+ b

◆2

+

✓
y

p
ab

◆2

= "
2
.

Proof. With abuse of notation, below let a = "a and b = "b.
In this case of z = 0, the problem decouples in two subproblems corresponding to the

diagonal blocks, with characteristic polynomials respectively given by

P1(�) := (x+ a� �)(�x+ b� �)� y
2 and P2(�) := (�x+ a+ �)(x+ b+ �)� y

2
.

Since a � b > 0, we have that �1 is a root of P1 and �4 is a root of P2. Therefore,
�2 = �3 ⌘ µ means that µ must satisfy both P1(µ) = 0 and P2(µ) = 0, that is P1(µ) �
P2(µ) = P1(µ) + P2(µ) = 0. These two relations give the system

(3.5)

⇢
µ
2 + ab� (x2 + y

2) = 0
µ(a+ b) + (a� b)x = 0

.

Solving for µ from the second equation and substituting in the first gives the relation

ab = x
2

✓
1�

(b� a)2

(a+ b)2

◆
+ y

2
,

which is nothing but (3.4). ⇤

Remark 3.7. In Theorem 3.6, we have assumed that in E we have b > 0. Naturally,
this is a generic condition; indeed, it corresponds to saying that E does not have a double
eigenvalue at 0. But, even if this condition is violated (that is, b = 0), it is a simple
computation from (3.5) to observe that the ellipse degenerates in the line given by the
x-axis. Finally, if we have at once a = b = 0 this means that there is no perturbation, and
this situation is obviously of no interest.
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3.1.2. The Hyperbola. Next, and still for the problem (3.3), we look at the red and blue
curves.

Theorem 3.8. Let M and E be as in (3.3), with a > b. Let �1 � �2 � �3 � �4 be the
ordered eigenvalues of M + "E, " > 0. Let � = "(a+ b)/2 and � = "(a� b)/2. Then, for
y = 0, we have �1 = �2 and �3 = �4 occurring along one distinct branch of the hyperbola
characterized as

(3.6)
⇣p

(� + x)2 + z2 �

p
(� � x)2 + z2

⌘2

� 4�2 = 0 .

Proof. We consider the eigenvalues of M(x, 0, z) + "E (that is, we set y = 0). We have:

�1,�2 = ± � +
p
(� ± x)2 + z2 ,

�3,�4 = ± � �
p
(� ± x)2 + z2 .

Now, �i � �j , for all i 2 {1, 2} and j 2 {3, 4}, follows from
p
(� � x)2 + z2 +

p
(� + x)2 + z2 � |� � x|+ |� + x| � 2� � 2� ,

and three trivial inequalities. Finally, we simply observe that

(�1 � �2)(�3 � �4) = 0

is equivalent to (3.6). In particular, we note that �1 = �2 occurs for x < 0, while �3 = �4

occurs for x > 0. This completes the proof. ⇤
Remarks 3.9.

(i) We can rewrite (3.6) as

(3.7)

✓q
(
p
⇢2 + ⌧2 + x)2 + z2 �

q
(
p
⇢2 + ⌧2 � x)2 + z2

◆2

� 4⇢2 = 0 ,

with ⇢ = "(a � b)/2 and ⌧ = "
p
ab, which makes us recognize (3.6) as the set of

points whose di↵erence between the distance to the foci is kept constant and equal
to 2⇢. Here, the foci are (�

p
⇢2 + ⌧2, 0) and (

p
⇢2 + ⌧2, 0), and the eccentricity

of the hyperbola is
p
⌧2/⇢2 + 1. As a consequence, we have the canonical form of

the hyperbola simply as (if b > 0)

(3.8)
x
2

⇢2
�

z
2

⌧2
= 1 , ⇢ = "(a� b)/2 , ⌧ = "

p

ab .

(ii) Each branch of the hyperbola (3.8) pierces the (x, y)-plane on the x-axis at the
points x = ±"

a�b
2
, which are inside the ellipse (3.4) for a > b.

(iii) For completeness, we remark that if a = b, then the two branches of the hyperbola
degenerate into the z-axis, obviously passing inside the ellipse (3.4), which in this
case is a circle, just at the origin.

The next result shows that, except for the ellipse (3.4) and the two branches of the
hyperbola (3.8), there are no more coalescing points for �i = �i+1, i = 1, 2, 3.
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Theorem 3.10. Let M and E be as in (3.3), with a > 0. If y 6= 0 and z 6= 0, then all the
eigenvalues of M + "E, " > 0, are simple.

Proof. Let � 2 R, and consider

M + "E � �I =


N11 N12

N
T
12

N22

�
,

where

N11 =


x+ "a� � y

y �x+ "b� �

�
, N12 =


0 z

�z 0

�
, N22 =


x� "a� � y

y �x� "b� �

�
.

Assume z 6= 0. Then N12 is invertible, and rank(M + "E � �I) � 2.
Moreover

rank(M + "E � �I) = rank

✓
N12 N11

N22 N
T
12

�◆
= rank

✓
N12 N11

N22 N
T
12

� 
I �N

�1

12
N11

0 I

�◆
=

= rank

✓
N12 0
N22 N

T
12

�N22N
�1

12
N11

�◆
.

Direct computation yields

(NT
12 �N22N

�1

12
N11)11 =

2"ay

z
.

Therefore, if y 6= 0, then rank(M + "E � �I) � 3. ⇤
We summarize in the following Theorem, which validates Figure 1 in this simpler “con-

stant E” case.

Theorem 3.11. Let M and E be as in (3.1), with E constant and with distinct eigen-
values. Then, locally, the eigenvalue 0 at the origin of (2.3), of multiplicity 4, splits into
four eigenvalues �1 � �2 � �3 � �4 of M + "E, " > 0, that are distinct except as follows:

(i) �1 = �2 and �3 = �4 along two branches of the same hyperbola;
(ii) �2 = �3 along an ellipse;
(iii) the hyperbola and ellipse of above points (i) and (ii) lie in two perpendicular planes

with the two branches of the hyperbola passing inside the ellipse.

⇤
3.2. The general problem. Now we consider the full problem, given by (2.5), repeated
below for convenience:

(3.9)


M1 + " bE "F

"F
T

M2 + "H

�
,

where M1 is as in (2.3) and bE has the structure given in Lemma 2.9, and both are C
k

functions of ↵,�, � (in a neighborhood of the origin).
What we are going to do is to validate all the steps of the analysis of Section 3.1, from

which the end result will follow. First of all, we observe that, by virtue of Theorem 2.10,
we can focus our attention on the block fM1 = fM + " eE, with fM and eE as in (2.7).
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Before proceeding, we make the following assumption, which is generic in light of Re-
mark 3.4.

Assumption 3.12. At (↵,�, �) = (0, 0, 0), bE has distinct eigenvalues, which therefore
will remain distinct in an open ball B0 centered at the origin.

Below we give the steps that conduce to the sought result:

(a) “On fM”.

(i) Given the form of fM in (2.7), we can shift the problem by (e↵+ e�)/2, so that

we can assume to have the following form for fM

(3.10) fM =

2

6664

e↵ e� 0 �e�
e� �e↵ e� 0

0 e� e↵ e�
�e� 0 e� e�↵

3

7775
.

(ii) Since ↵ = � = � = 0 is a generic CI point, then the Jacobian

J(") =

2

4
@↵e↵ @�e↵ @�e↵
@↵

e� @�
e� @�

e�
@↵e� @�e� @�e�

3

5

(↵,�,�)=(0,0,0)

is invertible for " su�ciently small.
(iii) It follows that we can change variables and use

x(") = e↵ , y(") = e� , z(") = e� ,
for " su�ciently small and in a neighborhood of (↵,�, �) = (0, 0, 0).

In short, we can assume that we are dealing with the form (cfr. with (2.3))

(3.11) fM =

2

664

x y 0 �z

y �x z 0
0 z x y

�z 0 y �x

3

775 ,

where the functions x, y, z, are C! in ", Ck in ↵,�, �, vanish at the origin (↵,�, �) =
(0, 0, 0) for " = 0, and can be used as local coordinates.

(b) “On eE ”. Here we look at the term eE in (2.7):

eE = "( bE +
1X

k=1

"
2k
E2k+1) =

 eE1
eE2

eE2 � eE1

�
, eE1 =

"
ea eb
eb ec

#
, eE2 =

"
ed ee
ee ef

#
.

As in Lemma 3.1, the eigenvalues of eE are still of the type ±1 and ±2. More-
over, under Assumption 3.12 we have that at (↵,�, �) = (0, 0, 0), bE has distinct
eigenvalues, and therefore eE has distinct eigenvalues in an open ball B0 centered
at (↵,�, �) = (0, 0, 0) and for " su�ciently small. Since eE is analytic in ", Ck in
(↵,�, �), and symmetric, its eigendecomposition around the origin is analytic in "
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and C
k in (↵,�, �). As a consequence, Corollary 3.2 and Lemma 3.3 still hold (lo-

cally), and we can therefore still consider the following structure for the functions
fM and eE:

(3.12) fM =

2

664

x y 0 �z

y �x z 0
0 z x y

�z 0 y �x

3

775 , eE =

2

664

a 0 0 0
0 b 0 0
0 0 �a 0
0 0 0 �b

3

775 , a > b > 0 ,

for (↵,�, �) in a su�ciently small neighborhood of the origin and for " in a su�-
ciently small interval around 0.

(c) “On the blue, red, green, curves ”. At this point, and with the caveat of the neces-
sity to appropriately restrict ourselves to (↵,�, �) in a su�ciently small neighbor-
hood of the origin and for " in a su�ciently small interval around 0, the arguments
of Section 3.1 on the ellipse and hyperbola still hold, much like they did there.

In an admittedly emphatic way, we can summarize the end result in Theorem 3.13
below.

Theorem 3.13. Figure 1 is qualitatively correct. ⇤

4. Algorithm and an Example

Our ultimate goal is to detect configurations such as the one depicted in Figure 1, which
betray the presence of a generic coalescing point for a complex Hermitian problem (and
we reiterate that we are exclusively concerned with the generic case, see Assumption 2.4
and Definition 2.2). To this end, we will consider computing curves of coalescing points
for a generic symmetric function bA of size 2n, depending on three real parameters. Our
algorithm will do two things: compute a curve of coalescing points and detect the presence
of other nearby curves.

4.1. Computation of curves of coalescing points. For the computation of curves of
coalescing points, we propose a method that follows closely the idea of predictor-corrector
path following algorithms, see for instance [13]. Consider the set �j = {⇠ : �j(⇠) =
�j+1(⇠)}, for some 0  j  2n� 1.

As it is well understood (e.g., see [5, 10]), �j is -locally– a smooth manifold embedded
in R3 (i.e., a curve). In general, the set �j will be made of several connected components
(curves), called branches. Here we address the problem of how to obtain a portion of one
branch � of �j that lies inside a given box ⌦ ⇢ R3. The computed branch will consist of
consecutive (with respect to arc length) points ⇠(0), ⇠(1), . . . on �.

Below we see how, given ⇠
(0)

, . . . , ⇠
(k), we obtain the next point ⇠(k+1). It is essentially

a three-stage process: predictor, corrector and acceptance/rejection of the step.
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4.1.1. Predictor. First, we form the predictor ⇠
(k+1)

pred
by taking a step of length h (see

below) along an approximate tangent direction T to the curve at ⇠(k). That is, see Figure
2, we set

⇠
(k+1)

pred
= ⇠

(k) + hT ,

with the following choices.

1. If k � 2, the vector T is the unit tangent vector at ⇠(k) to the curve obtained by
quadratic interpolation at the points ⇠(k�2)

, ⇠
(k�1) and ⇠

(k), chosen so that it has
positive component in the direction of ⇠(k)�⇠

(k�1); for k = 0, we set T = 0 (trivial
predictor), while, for k = 1, we take T to be the unit vector in the direction of
⇠
(1)

� ⇠
(0) (secant predictor).

2. The step length h is chosen adaptively as follows. Let hold be the step length used
to compute ⇠

(k). We set

(4.1) h = ⌧ hold, where ⌧ =

vuut
tol���⇠(k)

pred
� ⇠(k)

���
,

which aims to achieve
���⇠(k)

pred
� ⇠

(k)
��� ⇡ tol for all k (note that

���⇠(k)
pred

� ⇠
(k)

��� is

expected to be of order O(h2)). We also always enforce hmin  h  hmax; see
Section 4.4 for our choices of hmin, hmax.

4.1.2. Corrector. The predictor ⇠(k+1)

pred
is refined by searching for the point

⇠corr 2 argmin
⇠2⇧

F (⇠) = (�j(⇠)� �j+1(⇠))
2

which is closest to ⇠
(k+1)

pred
, where ⇧ is the plane through the predictor and perpendicular

to T . The minimization problem is solved by seeking a stationary point for F through
Newton’s method, where the predictor serves as initial guess. If convergence of Newton’s
iterations fails, a new predictor is formed by halving the step length h, until convergence
is successful or h falls below hmin. (See also [4, Section 3.3]).

4.1.3. Step acceptance/rejection. If the corrector stage was completed successfully, we up-

date the value of ⌧ using again the formula given in (4.1), with ⇠
(k+1)

pred
and ⇠corr in place of,

respectively, ⇠(k)
pred

and ⇠
(k). Presently, we will always enforce that ⌧ � ⌧min, where in all

of our experiments we have successfully used ⌧min = 0.7. Thus, if ⌧ < ⌧min, the point ⇠corr
is rejected, the predictor ⇠(k+1)

pred
is recomputed with step length reduced by the (updated)

factor ⌧ and the predictor-corrector stages are repeated. Otherwise, we set ⇠(k+1) = ⇠corr,
and consider the step to be successfully completed. Note that enforcing this rejection
strategy e↵ectively limits the maximum distance between the predictor and the computed
approximation, i.e. for all k we must have

(4.2)
���⇠(k)

pred
� ⇠

(k)
��� 

tol

⌧
2

min

.
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Figure 2. Computation of a curve of coalescing points, and search for
nearby curves.

The continuation algorithm progresses as described above until either h < hmin or the
branch under consideration has been completely approximated. For the latter case, we
should expect one of the following two situations to occur: (i) we have followed the branch,
moving away from ⇠

(0) in both directions, until we have stepped out of ⌦, (ii) the branch
is a closed curve that lies completely inside ⌦. While the first scenario is very easy to
detect, the second one needs to be handled with care. Below we give a description of the
method we have implemented to detect when situation (ii) occurs.

4.2. Detection of closed curves. Detecting when a branch is closed is a critical task of
a path-following algorithm, as failing to do so will cause the algorithm to enter an infinite
loop. This is even more critical in our context, where closed curves are a typical (so much
as desired) feature that we want to correctly identify. The method we have implemented is
an adaptation of the piercing computation proposed in [17] in the context of continuation
of implicitly defined two-dimensional manifolds.

We want to detect when two consecutive points ⇠(k) and ⇠
(k+1) on � “bracket” the initial

point ⇠(0) (see Figure 3). To do so, at the start of the process we define the piercing plane
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⇧p as the plane through ⇠
(0) perpendicular to the vector ⇠

(1)
� ⇠

(0). Upon computation
of each new point ⇠(k+1) on �, we check whether ⇠

(k) and ⇠
(k+1) fall on opposite sides of

⇧p. If so, we compute the intersection of the line segment that joins ⇠
(k) to ⇠

(k+1) with
the plane ⇧p, and then “correct” it along ⇧p similarly to what is done in Section 4.1.2. If
the corrected point is within a given distance � from ⇠

(0), we declare the branch � to be
closed, and terminate the computation. (Only even crossings of ⇧p need to be examined,
of course).

ξ0

ξk+1

ξk

Figure 3. Detection of closed curves.

4.3. Detection of nearby curves. While we compute a branch of coalescing points of
�j , we also want to detect other branches of �q, q 6= j, that pass nearby. To do so, we
add an additional module to the overall algorithm. With the same notation introduced
in Section 4.1, suppose ⇠

(k+1) has just been successfully computed. Before moving to the

next step, we consider a square S of side length l centered at ⇠(k+1)

pred
on the plane ⇧. We

subdivide S through a regular grid, and swipe the grid in search of coalescing points of
any possible pair of eigenvalues of bA. Restricting bA to S, this search is done with the
method developed in [6] for the computation of coalescing points of real symmetric matrix
functions of two parameters. See Figure 2. If coalescing points, other then ⇠

(k+1), are
detected, they are saved in a database, and will serve as initial seeds for the computation
of more curves of coalescing points.

4.4. Example. Below, we illustrate the performance of the previous algorithm, and fur-
ther show how the computed curves are used to locate coalescing points of the original
complex Hermitian problem.
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Consider the function A, for (↵,�, �) 2 [0, 1]3:

A(↵,�, �) = (1�
1

2
↵
2)H1 + ↵H2 + (1�

1

2
�
2)H3 + �H4 + (1�

1

2
�
2)H5 + �H6 ,

where H1, . . . , H6 are 6 ⇥ 6 complex Hermitian matrices explicitly given in [4, Example
4.1].

With the method developed in [4], the following three coalescing points were detected
and approximated inside the cube [0, 1]3:

(i) µ1 = µ2 at ⇠1 =
⇥
0.44511899 0.34014156 0.94489258

⇤
;

(ii) µ2 = µ3 at ⇠2 =
⇥
0.46761305 0.46167575 0.44946999

⇤
;

(iii) µ5 = µ6 at ⇠3 =
⇥
0.80644491 0.87260280 0.41732847

⇤
.

(4.3)

Below, we show how the approach proposed in this paper is used to locate the coalescing
points of A in ⌦ = [�0.25, 1.25]3.

First, we form Mpert = M + "E as in (1.2). This Mpert plays the role of bA in Section
4. The entries of E are chosen as independent samples from the uniform distribution in
[�1, 1] and " > 0 is chosen so that k"Ek = 10�1 (we note that, because of Lemma 2.8,
the results would be identical –for the same E– by choosing " < 0). Note that Mpert is a
12⇥ 12 real symmetric matrix function.

The next goal is to compute branches of the curves of coalescing points �1, . . . ,�11 for
A inside ⌦. We recall that our notation is such that along �j , the j-th and (j + 1)-th
eigenvalue coalesce. Computation of these curves is done as follows.

• First, we look for the initial points needed to start the computation by searching on
each of the faces of the cube [0, 1]3 for coalescing points of Mpert; this computation
is done similarly to what we described in Section 4.3. We find 20 initial points,
and place them into a queue Q.

• Then, we repeatedly pick a point in Q and compute the portion of the corre-
sponding branch that lies in ⌦. For the continuation, we chose hmin = 10�14,
hmax = 10�2 and tol = 10�3

⌧
2

min
. (Recall that ⌧min = 0.7). Once a branch has

been successfully computed, it is added to a database B of all computed branches.
• While continuing each branch, we monitor the presence of other nearby branches
as described in Section 4.3, with the square S there having side of length l = 0.1,
and further subdivided into 3 ⇥ 3 equal sub-squares (see Figure 2). If a point on
a (potentially) new branch is detected, it is added to Q.

• Finally, before starting computation of a branch from a point ⌘ in Q, and ⌘ 2 �j

for some j, we make sure that it is not part of a branch of �j that we already
computed (and hence in B). To this end, we run a proximity test : we check
whether, for some ⇠ on a branch of �j in B, we have k⌘ � ⇠k  d/2, where

(4.4) d =

s

h2max +

✓
tol

⌧
2

min

◆2
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is the maximum distance between two consecutive points on any computed branch;
for us, d ⇡ 1.005⇥ 10�2. If the condition above is satisfied, the point ⌘ is removed
from Q. The process continues until the queue Q is empty.

Remark 4.1. Of course, it is critical to choose carefully the parameters involved in the
computation. Our choices have been dictated by the fact that we expect the size of the
closed branches of coalescing points for Mpert, that originate close to a coalescing point of
A, to be O(" kEk).

(i) To properly detect when a branch is closed, the distance � of Section 4.3 has
to be taken orders of magnitude smaller then the expected diameter of the closed
curves, but safely away from the tolerance used to declare convergence of Newton’s
method. For this reason, in all our experiments we have chosen � = 10�7.

(ii) We need to choose l larger than d in order to possibly discover new branches while
avoiding “false positives” (i.e. erroneously discard a new branch) during proximity
checks.

In Figure 4, we show the 13 branches of coalescing eigenvalues we have computed. We
found branches from the curves �j , for j = 1, 2, 3, 4, 5, 7, 9, 10, 11. All but �7 are related to
the coalescing points ⇠1, ⇠2 and ⇠3 of (4.3). Note that there are four configurations similar
to the one of Figure 1. Of these four, three are related to the points in (4.3), and the
fourth (top one) reveals a coalescing point just outside the cube [0, 1]3.

To complete the experiment, we compute the centroid of each of the small closed
branches found for �2j , and refine it through Newton’s method (similar to what we de-
scribed in Section 4.1.2). Newton’s method always converged in a few iterations, and we
ended up correctly approximating the three coalescing points of (4.3) and found a new
one outside of [0, 1]3:

µ2 = µ3 at ⇠4 =
⇥
0.79393735 0.73364539 1.0768356

⇤
.

Remark 4.2. Finally, we point out that –based on our experience for the present example–
the algorithm we proposed in this work has proven to be quite robust, and it never failed
either to compute a branch (i.e. h < hmin never occurred in our experiments) or to
converge to a conical intersection of the original Hermitian problem.

5. Conclusions

In this work we considered perturbation of conical intersections (CIs) of a Hermitian
function A = B + iC 2 Cn⇥n depending on three real parameters, by studying generic
symmetric perturbations Mpert = M + "E of the associated symmetric function M =⇥
B �C
C B

⇤
. For Mpert, the eigenvalues now coalesce along curves and we gave rigorous results

on the local structure of these curves; in a nutshell, we validated the qualitative features of
Figure 1, and proved (at all order in ") that –near a CI of the original A– there are three
such curves, a nearly ellipsoidal closed curve (the green curve), containing the original CI,
and two other curves (the red and blue curves) which are nearly branches of hyperbola
passing inside the green curve. We further proposed and implemented an algorithm which



22 LUCA DIECI AND ALESSANDRO PUGLIESE

 

 

Γ1

Γ2,4,10

Γ3

Γ5

Γ7

Γ9

Γ11

Figure 4. Example 4.4: Curves of coalescing points for enlarged and per-
turbed symmetric problem Mpert. Curves are “dotted” outside of the cube
[0, 1]3. The four CIs of the original Hermitian problem are indicated by a
black dot.

computes (globally) these curves (red, blue, and green), and finally showed how from these
we can approximate CI points of the function A.

From the theoretical point of view, our work complements that of [14, 15], and from
the algorithmic/computational point of view, it complements that of [4].
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In [14, 15], the authors unfold the singularity given by the CI by perturbing the Her-
mitian problem with a non-Hermitian perturbation, and show that –at leading order– the
original CI gets replaced locally by a closed ring of “exceptional points”, that is parameter
values where the perturbed problem has a non-trivial Jordan block. In spite of the similar
flavor of having the original CI being replaced by a closed curve, our approach and that
of these cited works are fundamentally di↵erent. Most notably, our methodology leads to
robust algorithmic development for locating the CIs. This is due to the key aspect of our
development: we perturb the enlarged symmetric problem with a symmetric perturbation.
Although our perturbed problem cannot be directly interpreted as a perturbation of the
function A, the main advantage of our study is that not only the green curve becomes
available, but –of equal importance– also the red and blue curves. Indeed, these red and
blue curves are of paramount importance in the development of our computational method
to locate the CI of A, since with our computational technique we create a skeleton of all
red and blue (and green) curves from which we can approximate the CIs of the original
problem.

The computational method we developed in this work di↵ers from the purely topological
method we recently studied in [4], and is complementary to that. A detailed comparison of
these two methods remain to be done, but there are obvious benefits to either technique.
For example, the technique of [4] provides rigorous enclosure regions for generic CIs. At the
same time, the technique we examined in this work also presents the nontrivial advantages
below.

(i) The expensive global 3-d search of [4] for CIs over a region ⌦ (say, a cube), gets
now replaced by 2-d searches: over the boundary of ⌦ (faces of the cube) to locate
starting points for the (red and blue) curves of coalescing eigenvalues of Mpert, and
over small planar regions while continuing these curves.

(ii) The present technique allows to search for coalescing points for any selected pair
of eigenvalues of A, unlike the technique of [4] which can only be adapted to
approximate dominant (or nearly dominant) pairs. This is particularly convenient
when the dimension n is large and we are interested in a CI for a pair of eigenvalues
near “the middle of the spectrum.”

(iii) The present method is particularly appealing when there are very few CIs of A,
and the associated red/blue curves extend outside of our chosen search cube; this
way, by looking for starting points on the faces of the cube, computing the red and
blue curves will lead us to the CIs.

Finally, it should be possible to adapt our methodology and algorithm to the case of
the SVD, as well as to the case of a Hermitian positive definite pencil. This also remains
to be done in future work.
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Appendix

Here we prove Theorem 2.10. The key ingredient in the proof is related to the solution
of a Riccati equation; see Theorem A.1 below. In a similar context, this tool was used by
Stewart (see [19]), and later extensively adopted by Stewart & Sun (see [20]) to obtain
first order perturbation results on invariant subspaces and related eigenvalue problems.
However, we want to take into consideration smooth dependence on parameters, and seek
complete details –in our context– on the smoothness (with respect to parameters) and on
the structure of all factors involved, as detailed in Theorem 2.10. Unfortunately, these
cited results do not provide such refined detail (nor have we found it anywhere else), and
we thus need to provide complete proofs.

Theorem A.1. Let (↵,�, �) 2 B, an open ball centered at the origin of R3. Let M11 2

C
k(B,Rq⇥q), M22 2 C

k(B,Rm⇥m), E12 2 C
k(B,Rq⇥m), E21 2 C

k(B,Rm⇥q), E11 2

C
k(B,Rq⇥q), E22 2 C

k(B,Rm⇥m), for some p � 0. Also, let " 2 R be a real parame-
ter.

Consider the following nonlinear system for the unknown function X taking values in
Rm⇥q:

(A.1) "E21 �X(M11 + "E11) + (M22 + "E22)X � "XE12X = 0 .

Further, let kEijk  ⌘, for all (↵,�, �) 2 B and i, j = 1, 2, and assume that

(A.2) min
1iq, 1jm

|�i(M11)� �j(M22)| � � > 0, 8(↵,�, �) 2 B .

Then, there exist an interval I0 ⌘ (�"0, "0) and an open ball B0 ✓ B centered at the origin
of R3, such that (A.1) has a unique solution X which is analytic in " for " 2 I0, and C

k

in (↵,�, �) for (↵,�, �) 2 B0, and such that X = 0 for " = 0 and for any (↵,�, �) 2 B0.
For " 2 I0, this unique solution X can be explicitly written as:

(A.3) X =
1X

k=1

"
k
Xk(↵,�, �) ,

where each Xj 2 C
k(B0,Rm⇥q).

Proof. First of all, write the nonlinear system (A.1) more compactly as F (X, ",↵,�, �) = 0,
where F represents the left-hand-side of (A.1). Observe that F is C

! in X, and that for
" = 0, the only solution of (A.1) is X = 0, for any (↵,�, �) 2 B. Indeed, for " = 0, F = 0
reduces to the linear system

XM11 �M22X = 0

which has the unique solution X = 0 because of (A.2).
1. Now, since F is a C

k function of (",↵,�, �) 2 I ⇥B, and the derivative

FX |"=0 : Z ! �ZM11 +M22Z

is invertible (because of (A.2)), then the implicit function theorem guarantees the existence
of open neighborhoods R0 of the origin of Rm⇥q, and of the origin of I ⇥B, say I0 ⇥B0,
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where there is a unique C
k function eX(",↵,�, �) solution of F = 0, with eX 2 R0 for

(",↵,�, �) 2 I0 ⇥B0.
2. Next, we look directly for a solution of (A.1) as power series expansion in ". So,

since X = 0 for " = 0, we seek an expansion as in (A.3):

X = "X1 + "
2
X2 + · · · .

Direct substitution of this expansion in (A.1) shows that:

X1 : X1M11 �M22X1 = E21 ,

X2 : X2M11 �M22X2 = E22X1 �X1E11 ,

X3 : X3M11 �M22X3 = E22X2 �X2E11 �X1E12X1 ,

and, in general, for k = 3, 4, . . . ,

Xk : XkM11 �M22Xk =E22Xk�1 �Xk�1E11+

� [Xk�2E12X1 +Xk�3E12X2 + · · ·+X1E12Xk�2] .
(A.4)

Therefore, because of (A.2), the terms Xk in the expansion (A.3) are well defined and are
C
k functions for (↵,�, �) 2 B. Observe that each of the terms Xk satisfies the same linear

system with di↵erent right-hand sides. That is, we can write Xk = S
�1

Ck, where S
�1 is

the inverse of the Sylvester operator Z ! ZM11 �M22Z and Ck express the right-hand
sides of the recursion (A.4).

Let � = maxB kS
�1

k, so that we can write kXkk  �kCkk. Our next goal is to show
that

(A.5) kCkk  ck�
k�1

⌘
k
, where 0 < ck  4k , k = 1, 2, . . . .

As soon as (A.5) is verified, we can complete the proof as follows.

(i) From (A.5), the series (A.3) converges uniformly as long as 4"�⌘ < 1, a condition
that can be always satisfied in a su�ciently small "-neighborhood of 0.

(ii) From uniform convergence of (A.3), we will have that the limit function is contin-
uous in (↵,�, �) 2 B.

(iii) Since eX of point 1. above is the unique continuous solution of (A.1) passing
through X = 0 for " = 0, in su�ciently small neighborhoods of the origin, then
we must have that eX is the same as X given by (A.3), in su�ciently small neigh-
borhoods of the origin. And, therefore, in these neighborhoods, the function eX is
given by (A.3) and it identifies the unique solution of (A.1), analytic in " (because
of (A.3)) and C

k in (↵,�, �), which is what we wanted to prove.
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Finally, let us verify (A.5). Taking norms, from (A.4) inductively we get

kXkk  �kCkk , and

kCkk  ⌘

✓
2kXk�1k+ kXk�2kkX1k+ · · ·+ kX1kkXk�2k

◆

 �⌘

✓
2kCk�1k+ kCk�2kkC1k+ kCk�3kkC2k+ · · ·+ kC1kkCk�2k

◆

 �
k�1

⌘
k

✓
2ck�1 + ck�2c1 + ck�3c2 + · · ·+ c1ck�2

◆
,

and so the issue has become to study the growth of the numerical sequence recursively
defined by

ck = ck�1c0+ ck�2c1+ · · ·+ c1ck�2+ c0ck�1 =
k�1X

j=0

ck�1�jcj , k = 2, 3, 4, . . . , c0 = c1 = 1 .

Now, suppose that we had a function f(u) with convergent McLaurin’s expansion f(u) =P1
k=0

cku
k. Then, the expansion for f2(u) would be (c0+c1u+c2u

2+. . . )(c0+c1u+c2u
2+

. . . ) = c
2
0
+(c1c0+c0c1)u+ · · ·+

Pk�1

j=0
ck�1�jcju

k+ . . . , from which we then recognize that
the coe�cients ck’s we are after are simply the coe�cients in the power series expansion

of the function f(u) = 1�
p
1�4u
2u , which has radius of convergence 1/4. By using the power

series expansion for the square root, and simplifying, we obtain

ck =
1

2
(�1)k

✓
1/2

k + 1

◆
4k+1

, where

✓
1/2

j

◆
=

1/2(1/2� 1) . . . (1/2� j + 1)

j!
,

and therefore ck+1/ck = 4� 6

k+2
and (A.5) is proved. ⇤

Remark A.2. An interesting aspect of Theorem A.1 is that it validates an implicit func-
tion theorem giving analyticity with respect to a parameter ("), and C

k smoothness with
respect to the other parameters.

Proof of Theorem 2.10. Finally, let us give a complete proof of Theorem 2.10.
We now proceed as follows.

(1) We seek the transformation T =


I 0
X I

�
, with X taking values in R2n�4,4, such

that

T
�1


M1 + " bE "F

"F
T

M2 + "H

�
T =


I 0

�X I

� 
M1 + " bE "F

"F
T

M2 + "H

� 
I 0
X I

�
=

=


M1 + " bE + "FX "F

0 M2 + "H � "XF

�
.

(A.6)

Observe that this transformation T exists if and only X satisfies the following
special version of (A.1):

(A.7) "F
T
�X(M1 + " bE) + (M2 + "H)X � "XFX = 0 .
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Thus, because of Theorem A.1, the transformation is well defined (in appropriate
neighborhoods of the origin) and X has the form as in (A.3).

(2) Next, we consider the following block-QR factorization (cfr. [19]):

I 0
X I

�
= QR , where Q =


I �X

T

X I

� 
(I +X

T
X)�1/2 0

0 (I +XX
T )�1/2

�

and R =


(I +X

T
X)1/2 (I +X

T
X)�1/2

X
T

0 (I +XX
T )�1/2

�
,

(A.8)

where we have taken the unique positive definite square root; note that I +X
T
X

and I+XX
T are obviously positive definite and the unique positive definite square

root of these functions is as smooth as the functions themselves (see also (A.15)).
Now, observe that Q is orthogonal (QT

Q = I2n) and therefore we must have that

Q
T


M1 + " bE "F

"F
T

M2 + "H

�
Q

is both symmetric and (block) upper triangular. Then, it must be block diagonal.
That is, we have

Q
T


M1 + " bE "F

"F
T

M2 + "H

�
Q =

"
fM1 0

0 fM2

#
, where fM1 is given by

(I +X
T
X)�1/2


M1 + " bE + "(XT

F
T + FX) +X

T (M2 + "H)X

�
(I +X

T
X)�1/2

(A.9)

and a similar expression for fM2. We focus on fM1 only, since we are only interested
in tracking the eigenvalues of fM1, but the argument for fM2 is virtually identical.

(3) Next, we take a closer look at the form of the solution X of (A.7). Because of
Theorem A.1, we know that for this X we have the expression

X =
1X

k=1

"
k
Xk, where

X1 : X1M1 �M2X1 = F
T
, and

Xk : XkM1 �M2Xk = Rk , for k = 2, 3, . . . , where

Rk = HXk�1 �Xk�1
bE � [Xk�2FX1 +Xk�3FX2 + · · ·+X1FXk�2] .

(A.10)

The following construction clarifies the form of X.

Definition A.3. Consider a matrix V 2 R2n�4,4, n � 3, and partition it as

V =


V1 V2

V3 V4

�
, where V1, V2, V3, V4 2 Rn�2,2. We say that V is of “type-E” if

V =


V1 V2

V2 �V1

�
, and we say that V is of “type-M” if V =


V1 V2

�V2 V1

�
.
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Clearly, type-E and type-M matrices form subspaces of R2n�4,4, which we will
call SE and SM respectively. Moreover, they are mutually complementary, since
we can consider the unique decomposition (projection) of any matrix V 2 R2n�4,4

into the sum of a type-E and a type-M matrix, simply taking V = Y + Z with

Y =
h
(V1�V4)/2 (V2+V3)/2
(V2+V3)/2 �(V1�V4)/2

i
and Z =

h
(V1+V4)/2 (V2�V3)/2
�(V2�V3)/2 (V1+V4)/2

i
. Observe that F

T in

(A.6) and (A.7) is of type-E, i.e. F T
2 SE .

In particular, for the function X solution of (A.7), we can write

(A.11) X = Y +Z =
1X

k=1

"
k(Yk +Zk) , where Yk 2 SE , Zk 2 SM , k = 1, 2, . . . .

The following two Lemmata can be proved by (tedious, but straightforward,
computations) directly multiplying the matrices involved.

Lemma A.4. Let M1,M2, E,H be the matrices in (A.6).
The Sylvester operator V ! VM1 �M2V leave SE and SM invariant. In other

words, if Y 2 SE, then YM1 �M2Y 2 SE, if Z 2 SM , then ZM1 �M2Z 2 SM .
Similarly, the Sylvester operator V ! V E �HV transforms SE into SM , and

viceversa. In other words, if Y 2 SE, then Y E � HY 2 SM , if Z 2 SM , then
ZE �HZ 2 SE. ⇤
Lemma A.5. Let Y, bY 2 SE and Z, bZ 2 SM , and let F T

2 SE. Then:
(a) ZFY + Y FZ 2 SM ;
(b) ZFZ 2 SE and Y FY 2 SE;
(c) ZF bZ + bZFZ 2 SE, Y F bY + bY FY 2 SE. ⇤
With these, we can now prove the following structural result on the solution X

of (A.7).

Lemma A.6. Let X be given by (A.10) and further rewritten as in (A.11). Then:
Yk = 0, for k even, and Zk = 0 for k odd. In other words, the solution of (A.10)
can be written as:

X = Y + Z , Y =
1X

k=1

"
2k�1

Y2k�1 , Z =
1X

k=1

"
2k
Z2k ,

where Y2k�1 2 SE , Z2k 2 SM , for all k = 1, . . . , .

(A.12)

Proof. The proof is by induction on the index k in the summation of (A.11).
For k = 1, we simply have X1M1 � M2X1 = F

T . Since F
T
2 SE , because of

Lemma A.4 we get X1 = Y1.
Next, assuming the result to be true up to index k, for Xk we have XkM1 �

M2Xk = Rk. But, by looking at the form of Rk, using the induction hypothesis,
Lemma A.4 and (repeatedly) Lemma A.5, we can conclude that Rk 2 SE for k

odd, and Rk 2 SM for k even. Therefore, using Lemma A.4 we get that Yk = 0
for k odd and Zk = 0 for k even, as claimed. ⇤
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(4) Finally, we look at the term fM1 in (A.9). First, consider the term (I+X
T
X)1/2fM1(I+

X
T
X)1/2, that is

(A.13) M1 + " bE + "(XT
F

T + FX) +X
T (M2 + "H)X.

Definition A.7. A matrix V 2 R4⇥4, symmetric (V T = V ), is called “E-like” if

V =


V1 V2

V2 �V1

�
, V T

i = Vi, i = 1, 2, and “M-like” if V =


V1 V2

�V2 V1

�
, V T

1
= V1 and

V
T
2

= �V2; here, Vi 2 R2⇥2, i = 1, 2.

Observe that M1 is “M-like”, and E is “E-like”, and that there is a unique
decomposition of symmetric (4⇥4) matrices into the sum of “M-like” and “E-like”
matrices (they form subspaces, which are obviously invariant under transposition).

The following Lemma is useful to complete our argument, and it can be easily
proved by direct verification.

Lemma A.8. Let M1,M2, E,H, F , be the matrices in (A.13), with X given by
(A.12). Then:
(a) (FY + Y

T
F

T ) is “M-like”, and (ZY + Z
T
F

T ) is “E-like”;
(b) Y

T
M2Y and Z

T
M2Z are “M-like”, whereas Z

T
M2Y and Y

T
M2Z are “E-

like”;
(c) Y

T
HY and Z

T
HZ are “E-like”, whereas Z

T
HY and Y

T
HZ are “M-like”;

(d) Let P be positive definite and write P = PM +PE, where PM is “M-like” and
PE is “E-like”. Further, let V be “M-like” and W be “E-like”. Then:
(d-1) PMV PM is “M-like” and PEV PE is “E-like”;
(d-2) PMWPM is “E-like” and PEWPE is “M-like”;
(d-3) PMV PE+PEV PM is “E-like” and PMWPE+PEWPM is “M-like”. ⇤

Using Lemma A.8, and the form of X from (A.12), we immediately obtain that
the term in (A.13) can be written as

(M1 +
1X

k=1

"
2k bbE 2k) + "( bE +

1X

k=1

"
2k bbE 2k+1) ,

where, for k = 1, 2, . . . , each
bbE 2k is “M-like” and each

bbE 2k+1 is “E-like”.

Next, we notice that no structural change takes place when forming fM1:

(A.14) (I +X
T
X)�1/2


(M1 +

1X

k=1

"
2k bbE 2k) + "( bE +

1X

k=1

"
2k bbE 2k+1)

�
(I +X

T
X)�1/2 ;

this is because (I+X
T
X)�1/2 has the following series expansion (norm-convergent

for kXT
Xk < 1, which can be trivially guaranteed for " su�ciently small because

of (A.11)):

(A.15) (I +X
T
X)�1/2 =

1X

k=0

✓
�1/2

k

◆
(XT

X)k .
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With this, writing X = Y + Z as in (A.12), and observing that expressions of the
type Y

T
j Zl + Z

T
l Yj are “E-like”, whereas terms of the type Y

T
j Yj and Z

T
l Zl are

“M-like”, repeatedly using Lemma A.8, we have completed the proof of Theorem
2.10. ⇤
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