In the last decade, spectral linear statistics on large dimensional random matrices have attracted significant attention. Within the physics community, a privileged role has been played by invariant matrix ensembles for which a two-dimensional Coulomb gas analogy is available. We present a critical revision of the Coulomb gas method in random matrix theory (RMT) borrowing language and tools from large deviations theory. This allows us to formalize an equivalent, but more effective and quicker route toward RMT free energy calculations. Moreover, we argue that this more modern viewpoint is likely to shed further light on the interesting issues of weak phase transitions and evaporation phenomena recently observed in RMT.
A shortcut through the Coulomb gas method for spectral linear statistics on random matrices
Cunden, Fabio Deelan;FACCHI, PAOLO;
2016-01-01
Abstract
In the last decade, spectral linear statistics on large dimensional random matrices have attracted significant attention. Within the physics community, a privileged role has been played by invariant matrix ensembles for which a two-dimensional Coulomb gas analogy is available. We present a critical revision of the Coulomb gas method in random matrix theory (RMT) borrowing language and tools from large deviations theory. This allows us to formalize an equivalent, but more effective and quicker route toward RMT free energy calculations. Moreover, we argue that this more modern viewpoint is likely to shed further light on the interesting issues of weak phase transitions and evaporation phenomena recently observed in RMT.File | Dimensione | Formato | |
---|---|---|---|
136 coulomb.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
354.99 kB
Formato
Adobe PDF
|
354.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.