We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C*-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.
From discrete to continuous monotone C*-algebras via quantum central limit theorems
CRISMALE, VITONOFRIO;LU, Yungang
2017-01-01
Abstract
We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C*-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CriFidLuIDAQP17.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
269.56 kB
Formato
Adobe PDF
|
269.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CFL_IDAQP_A.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
229.18 kB
Formato
Adobe PDF
|
229.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.