We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C*-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.

From discrete to continuous monotone C*-algebras via quantum central limit theorems

CRISMALE, VITONOFRIO;LU, Yungang
2017-01-01

Abstract

We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C*-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.
File in questo prodotto:
File Dimensione Formato  
CriFidLuIDAQP17.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 269.56 kB
Formato Adobe PDF
269.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CFL_IDAQP_A.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 229.18 kB
Formato Adobe PDF
229.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/180349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact