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FROM DISCRETE TO CONTINUOUS MONOTONE

C∗-ALGEBRAS VIA QUANTUM CENTRAL LIMIT

THEOREMS

VITONOFRIO CRISMALE, FRANCESCO FIDALEO, AND YUN GANG LU

Abstract. We prove that all finite joint distributions of creation
and annihilation operators in Monotone and anti-Monotone Fock
spaces can be realised as Quantum Central Limit of certain oper-
ators on a C∗-algebra, at least when the test functions are Rie-
mann integrable. Namely, the approximation is given by weighted
sequences of creators and annihilators in discrete monotone C∗-
algebras, the weight being the above cited test functions. The
construction is then generalised to processes by an invariance prin-
ciple.
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1. introduction

Monotone Fock spaces firstly appeared in the last years of the 1990’s
in the papers of Lu [14], and Muraki [16]. The investigation on the
convergence of sums of the so called self-adjoint position operators
on such spaces can be traced out in [17]. There, it was defined the
so-called monotone independence for random variables in C∗- alge-
braic probability spaces and proved a Central Limit Theorem (CLT for
short). Namely, normalised sums of monotonically independent and
identically distributed self-adjoint operators in C∗-algebraic probabil-
ity spaces weakly converge to the arcsine distribution. This result has
a direct concrete application as one finds that position operators, seen
as self-adjoint random variables in the discrete Monotone C∗-algebra,
realise the monotone independence.
On the other hand, the study of the asymptotic behaviour of sums

of operators (random variables) realising the monotone commutation
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rules [4, 8] sometimes needs the two sums of monotone creators and
annihilators

S1
N :=

1√
N

N
∑

i=1

a†i , S−1
N :=

1√
N

N
∑

i=1

ai,

have to be handled separately. This means that one looks for the limit
of the so-called mixed moments, i.e.

lim
N→+∞

ϕ
(

S
ε(1)
N · · ·Sε(m)

N

)

, m ∈ N, ε(1), . . . , ε(m) ∈ {−1, 1}

in some C∗-algebraic probability space (A, ϕ), A being a C∗-algebra and
ϕ a state on it. The monotone central limit results above recalled do not
cover this case, which it has been already performed in many relevant
situations in Quantum Probability under the name of Quantum (or
noncommutative) CLT. As an example one can look at [18] for the
case of q-deformed random variables, or at [5] for processes coming
from the so-called 1-mode type interacting Fock spaces (IFS for short).
Furthermore, we mention that in [2] such a Quantum CLT was carried
on also for the Haagerup states on the group C∗-algebra of the Free
Group with countably many generators by using the so-called singleton
condition (see e.g. [1] for details).
It is our aim to deal with this problem in the monotone setting. In-

deed, we firstly take A a C∗-algebra generated by objects concretely
realised as creators and annihilators in the Monotone Fock space over
L2(J), J being a Lebesgue measurable part of R. Then, we consider
the C∗-algebraic probability space (A, ωΩ), Ω being Fock vacuum and
ωΩ the relative vector state, together with the vacuum moments of cre-
ation and annihilation operators in (A, ωΩ). More precisely, for m ∈ N,
f1, . . . , fm ∈ L2(J), ε(1), . . . , ε(m) ∈ {−1, 1}, we look at the collec-
tion of the moments ωΩ

(

aε(1)(f1) · · ·aε(m)(fm)
)

, where a−1(f) := a(f),

a1(f) := a†(f) and investigate whether they can arise from a Quan-
tum CLT. Namely, we ask if it is possible to find another C∗-algebraic
probability space related in some way to the monotone commutation
relations, say (B, ϕ), and some bi ∈ B with b−1

i := bi, b
1
i := b†i , s.t., for

any m ∈ N,

lim
N

ϕ
(

S
ε(1)
N · · ·Sε(m)

N

)

= ωΩ

(

aε(1)(f1) · · ·aε(m)(fm)
)

,

where S
ε(i)
N := 1√

N

∑N
k=1 b

ε(i)
k , ε(i) ∈ {−1, 1}. The C∗-algebra B could

be actually obtained by factoring out the free product C∗-algebra by the
ideal generated by a ”concrete” commutator, according to the results
established in [6, 7].
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We show that this program can be carried out at least when J :=
[0, 1] and the test functions fi’s are Riemann integrable maps. The
approximating sequence involves sums of creation and annihilation op-
erators generating the concrete unital C∗-algebra of the discrete Mono-
tone Commutation Relations, which thus gives B. As the limit above
contains more informations than those included in the convergence of
sums of self-adjoint operators in B, our result is more general than
the CLT in [17], and it seems naturally addressed for applications in
Quantum Physics and Applied Mathematics, above all in Quantum
Information and Computing.
The paper is organised as follows. In Section 2, we review definitions

and some features concerning discrete and continuous Monotone Fock
spaces, as well as the corresponding Monotone C∗-algebras. Section 3
is devoted to the main result, i.e. the CLT and is further equipped
with some technical results necessary to reach its proof. In the final
part, we outline how to achieve a functional counterpart (Donsker’s
invariance principle, see [11]) of the above cited theorem. Notice that
the invariance principle in particular entails the weak convergence of
position and momentum processes on the Monotone C∗-algebra, to the
so-called Monotone Brownian motion [16]. In Section 4, we finally
highlight the anti-Monotone case obtaining the same kind of results as
the Monotone one.

2. preliminary tools

The first part of the section is directed to recall some useful fea-
tures related to the monotone discrete and continuous Fock spaces,
as well as the corresponding annihilator and creator operators. The
Fock spaces we are dealing with are based on the one particle spaces
ℓ2(N) = L2(N, dn) (where dn is the counting measure on N), and
L2([0, 1], dt) (where dt is the Lebesgue measure) respectively. The
reader is referred to [8, 14, 16] for further details.
In the last lines we report some notations and facts about partitions

on a set, necessary for the development of Section 3.
Fix k ≥ 1 and denote Ik := {(i1, i2, . . . , ik) ⊂ N | i1 < i2 < · · · < ik}.

When k = 0, we take I0 := {∅}, ∅ being the empty sequence. For each
k, Hk := ℓ2(Ik) is the Hilbert space giving the k-particles space. The 0-
particle space H0 = ℓ2(∅) is identified with the complex scalar field C.
The discrete monotone Fock space is then defined as Fm :=

⊕∞
k=0Hk.

Given any increasing sequence α = (i1, i2, . . . , ik) with arbitrary
length of natural numbers, we denote by eα the generic element of
the canonical basis of Fm. The monotone creation and annihilation
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operators are respectively given, for any i ∈ N, by

a†ieα :=

{

e(i,i1,i2,...,ik) if i < i1 ,
0 otherwise ,

aieα :=

{

e(i2,...,ik) if k ≥ 1 and i = i1,
0 otherwise ,

where, as usual, ai := a(ei), a
†
i := a†(ei). One can check that ‖a†i‖ =

‖ai‖ = 1 (see e.g. [4], Proposition 8). Moreover, a†i and ai are mutually
adjoint and satisfy the following relations

(2.1)
a†ia

†
j = ajai = 0 if i ≥ j ,

aia
†
j = 0 if i 6= j .

In addition, the following commutation relation

aia
†
i = I −

i
∑

k=0

a†kak, i ∈ N

holds true.
By means of the monotone creation and annihilation operators, one

constructs the Monotone C∗-algebra Rm as the unital C∗-algebra gen-
erated {ai | i ∈ N}. Its structure was investigated in [8] where the
reader is referred for details.
The incoming part is devoted to recall definitions and some features

of continuous Monotone Fock Space. They allow us to prove several
technical statements which, together with some results dealing with
discrete monotone Fock space, are crucial to prove the main result of
the following section, that is a Quantum CLT.
Let J ⊆ R be a Lebesgue measurable set. For any n ∈ N, Jn

+ denote
the simplex made by the sequences (t1 < t2 < · · · < tn) of length n
of elements in J . As usual, we denote J0

+ = {∅}. If µn ≡ dnt is the
Lebesgue measure on R

n for any n ≥ 1, (hereafter we use the bold
as the shorthand notation for vectors), let Hn be the complex Hilbert
space L2(Jn

+, µn). After taking µ0 as the Dirac unit mass on ∅ and
H0 := L2(J0

+, µ0) = CΩ, Ω being the vacuum vector, the continuous
Monotone Fock space is then achieved as ΓM =

⊕∞
n=0Hn. The inner

product, linear in the second variable, is defined as

〈f, g〉n = δm,n

∫

Jn
+

f(t1, . . . , tn)g(t1, . . . , tn)d
nt, f ∈ Hm, g ∈ Hn
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The creation operator with test function f ∈ H is defined, for g ∈ Hn,
(t1, t2, . . . , tn) ∈ Jn

+, n ∈ N, t ∈ J , as

[a†(f)g](t, t1, . . . tn) :=

{

f(t)g(t1, · · · tn) if t < t1,
0 otherwise .

Since ‖a†(f)‖ ≤ ‖f‖ on any n-th particles space, this operator can be
linearly extended on the whole ΓM by density.
The annihilation operator with test function f ∈ H is the bounded

extension on ΓM of

(2.2) [a(f)g](t1, . . . tn) :=

{ ∫

t<t1
f(t)g(t, t1, · · · tn)dt if n ≥ 1 ,

0 if n = 0 ,

g being a function in Hn+1 and, as above, (t1, t2, . . . , tn) ∈ Jn
+, n ∈ N,

t ∈ J . From (2.2), it kills the vacuum Ω and one can check a(f)∗ =
a†(f). W also note that the construction of continuous monotone Fock
space can be obtained as an IFS, see e.g. [15].
In the last lines of the section, we report some features bridging

partitions of a set and sequences of creation and annihilation operators
in general IFS.
Let S be a non empty linearly ordered finite set, and σ a partition

of S. Namely, σ = {V1, . . . , Vp} with

Vi ∩ Vj = δijVj , ∪p
i=1Vi = S ,

where the Vh are called blocks of the partition σ. A partition σ is
called crossing if it contains at least two distinct blocks Vi and Vj, and
elements v1, v2 ∈ Vi, w1, w2 ∈ Vj s.t. v1 < w1 < v2 < w2. Otherwise,
it is called non crossing. It is called a pair partition if each block
Vh contains exactly two elements. In this case, for any h we write
Vh = (lh, rh), where lh < rh, l1 < l2 < . . . < l|S|/2 and |S| is the
necessarily even number of elements in S.
In what it follows, we typically take S = {1, . . . , m} and denote

the set of partitions on it as P (m). Once m is even, say m = 2n,
then PP (2n) and NCPP (2n) will denote the sets of pair partitions
and non crossing pair partitions, respectively. As from above, each
σ ∈ PP (2n) can be simply denoted by (lh, rh)

n
h=1. One says that

(lh, rh)
n
h=1 ∈ NCPP (2n) is connected if l1 = 1 and r1 = 2n. The

cardinalities of PP (2n) and NCPP (2n) are (2n!)/(2nn!) [3], and the
nth Catalan number 1

n+1

(

2n
n

)

[13], respectively.
Partitions are a powerful tool when one has to compute mixed mo-

ments of creation-annihilation operators w.r.t. the vacuum in general
Fock spaces, as we are going to see. To this aim, take a the Hilbert
space H and consider a IFS on it (see [9]). It is useful to denote creation
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and annihilation operators as a1(f) := a†(f) and a−1(f) := a(f), for
f ∈ H, respectively. If m ≥ 1, monomials like aε(1)(f1) · · · aε(m)(fm),
where ε(1), . . . , ε(m) ∈ {−1, 1} will often be considered for comput-
ing joint laws or Central Limit results. In particular, one finds that
for the vector state ωΩ(·) := 〈Ω, ·Ω〉 on the Fock space, the vacuum
expectation

(2.3) ωΩ

(

aε(1)(f1) · · ·aε(m)(fm)
)

:=
〈

Ω, aε(1)(f1) · · · aε(m)(fm)Ω
〉

is null when m is odd. If instead m = 2n, both the following conditions
necessarily hold for the non vanishing of (2.3):

(1)
∑2n

k=1 ε(k) = 0

(2)
∑2n

j=k ε(j) ≥ 0, for k = 1, . . . , 2n.

This means that the sequences of ε realising (1) and (2) above give rise
to the so-called Dyck words of length 2n on the binary alphabet {−1, 1}
[12]. As the set giving the totality of strings ε of type {ε(1), . . . , ε(2n)}
is naturally identified with {−1, 1}2n, by {−1, 1}2n+ we denote the family
of those ε representing a Dyck word.
Notice that for ε ∈ {−1, 1}2n, one finds p ∈ N and a strictly increas-

ing sequence 0 ≤ l1 < . . . < lp ≤ 2n s.t. ε(lj) = −1 for any j. For the
special case ε ∈ {−1, 1}2n+ , conditions (1) and (2) above immediately
entail p = n, l1 = 1 and ln < 2n. In addition, to each ε ∈ {−1, 1}2n+ one
can uniquely associate a non crossing pair partition of the set consisting
of 2n elements. Namely, the first block is obtained just pairing the first
consecutive (−1, 1) appearing on the string starting from the left. The
second pairing will arise by cancelling the two indices previously paired
and reproducing the previous scheme to the remaining ones, and so on.
For the convenience of the reader, in a table we arrange the situation
for 2n = 6.

Dyck word pair partition

−−−+++ (34) (25) (16)
−−+−++ (23) (45) (16)
−+−−++ (12) (45) (36)
−−++−+ (23) (14) (56)
−+−+−+ (12) (34) (56)

Thus, a one-to-one correspondence between {−1, 1}2n+ and NCPP (2n)
is realised, and one uses the natural identification ε ≡ (lh, rh)

n
h=1.
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The following notations describe some objects we will use in the
successive sections. For n,N ∈ N with 1 ≤ n ≤ N , we take

Mp(2n,N) := {k : {1, . . . , 2n} → {1, . . . N} | |k−1(j)| = 2, j ∈ R(k)}
as the set of all 2-1 maps with range R(k) included in {1, . . . N}. If fur-
ther (lh, rh)

n
h=1 is a pair partition on {1, . . . , 2n}, by Mp((lh, rh)

n
h=1, N)

we denote the collection of k in Mp(2n,N) s.t. k(lh) = k(rh) for any
h.
Very often in the sequel, the generic k(l) will be simply denoted as

kl without further mention. We also denote

Mp(2n) :=
⋃

N∈N
Mp(2n,N) ,

Mp((lh, rh)
n
h=1) :=

⋃

N∈N
Mp((lh, rh)

n
h=1, N) .

3. a quantum central limit theorem

Achieving the main theorem of the section needs some technical re-
sults dealing with continuous Monotone Fock Spaces and Monotone
C∗-algebras, which we are going to present. For such a purpose, from
now on we put J ≡ [0, 1].
The next results amount to the computation of vacuum mixed mo-

ments for creation and annihilation operators acting on the Monotone
Fock space ΓM . Moreover, Lemmata 3.1 and 3.2 are borrowed from
[14], Lemmata 3.1 and 3.2 and here reported for the reader’s conve-
nience.

Lemma 3.1. For each n ∈ N, t ∈ [0, 1], f ∈ H and G ∈ Hn+1, one has

[a(f)G](t1, . . . tn) =

∫ 1

0

f(t)G(t, t1, · · · tn)χ[0,t1)(t)dt

=

∫ 1

0

f(t)G(t, t1, · · · tn)χ(t,1](t1)dt.

If in particular G = g
∏n

k=1 gk and 1 ≤ m ≤ n,

a(f)a†(g)a†(g1) · · · a†(gn)Ω =

∫ 1

0

dtf(t)g(t)a†(g1χ(t,1]) · · · a†(gn)Ω

=

∫ 1

0

dtf(t)g(t)a†(g1χ(t,1]) · · ·a†(gmχ(t,1])a
†(gm+1) · · ·a†(gn)Ω

=

∫ 1

0

dtf(t)g(t)a†(g1χ(t,1]) · · ·a†(gnχ(t,1])Ω .
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Lemma 3.2. Let us take n ∈ N, ε ≡ (lh, rh)
n
h=1 be a non crossing

connected pair partition on {1, . . . , 2n}, and f1, . . . , f2n ∈ H. Then

ωΩ

(

aε(1)(f1) · · ·aε(2n)(f2n)
)

=

∫ 1

0

ωΩ

(

aε(2)(f2χ[0,t)) · · ·aε(2n−1)(f2n−1χ[0,t))
)

f1(t)f2n(t)dt

Proposition 3.3. Let n ∈ N, (lh, rh)
n
h=1 ∈ NCPP (2n) and f1, . . . , f2n ∈

H. Then

ωΩ

(

aε(1)(f1) · · ·aε(2n)(f2n)
)

=

∫

Jn

∏

1≤h<m≤n

∆th,tm(rh, rm)

n
∏

h=1

flh(th)frh(th)dth ,
(3.1)

where

∆th,tm(rh, rm) := δrm)(rh) + δrh)(rm)χ[0,th)(tm)

and

δj)(h) :=

{

1 if j > h ,
0 otherwise .

Proof. We firstly notice that (3.1) holds for n = 1. Suppose further it
is true for each k < n. The assumption on (lh, rh)

n
h=1 gives r1 = 2j

for some j, and the factorisation rule for vacuum mixed moments in
interacting Fock spaces (see e.g. pag. 215 in [9]) yields

ωΩ

(

aε(1)(f1) · · ·aε(2n)(f2n)
)

=ωΩ

(

aε(1)(f1) · · ·aε(2j)(f2j)
)

ωΩ

(

aε(2j+1)(f2j+1) · · ·aε(2n)(f2n)
)

.
(3.2)

We distinguish two cases, namely j < n and j = n.
If j < n, one firstly notices
∏

1≤h<m≤j

∆th,tm(rh, rm)
∏

j+1≤h<m≤n

∆th,tm(rh, rm) =
∏

1≤h<m≤n

∆th,tm(rh, rm) .

Furthermore, as (lh, rh)
n
h=j+1 is a non crossing pair partition of {2j +

1, . . . , 2n}, the induction assumption applied twice to the r.h.s. of (3.2)
gives the thesis.
If j = n, Lemma 3.2 gives

ωΩ

(

aε(1)(f1) · · ·aε(2n)(f2n)
)

=

∫ 1

0

ωΩ

(

aε(2)(f2χ[0,t)) · · ·aε(2n−1)(f2n−1χ[0,t))
)

f1(t)f2n(t)dt

=

∫

Jn

∏

2≤h<m≤n

∆th,tm(rh, rm)

( n
∏

h=2

flh(th)(frhχ[0,t1))(th)dth

)

f1(t)f2n(t)dt,
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where the last equality follows from the induction assumption since
{(lh, rh)}nh=2 is non crossing. Moreover, as δr1)(rh) = 1 for h = 2, . . . , n,
one has

n
∏

h=2

δr1)(rh)χ[0,t1)(th)
∏

2≤h<m≤n

∆th,tm(rh, rm) =
∏

1≤h<m≤n

∆th,tm(rh, rm) ,

The thesis then follows. �

In our CLT, once fixing ε ∈ {−1, 1}, we will deal with the asymptotic
behaviour of sums of type

Sε
N (a, f) :=

1√
N

N
∑

k=1

aεkf

(

k

N

)

, N ∈ N

for f a bounded complex-valued Riemann integrable function on [0, 1],
i.e. f ∈ R∞([0, 1]). More in detail, we will look for the limit of the
vacuum mixed moments of sums as above, i.e.

lim
N→∞

ωΩ

(

S
ε(1)
N (a, f1) · · ·Sε(m)

N (a, fm)
)

,

for m ∈ N, ε(1), . . . , ε(m) ∈ {−1, 1} and f1, . . . , fm ∈ R∞([0, 1]). A
simpler evaluation of the limit can be achieved after simplifying the
computation of such vacuum expectations. The following results are
aimed to this goal.

Lemma 3.4. Let f1, . . . , fm ∈ R∞([0, 1]), m ∈ N. Then, for each

ε(1), . . . , ε(m) ∈ {−1, 1}, one has that ωΩ

(

S
ε(1)
N (a, f1) · · ·Sε(m)

N (a, fm)
)

could not vanish only when m = 2n, ε = (ε(1), . . . , ε(2n)) ∈ {−1, 1}2n+
and k ∈ Mp((lh, rh)

n
h=1, N), (lh, rh)

n
h=1 being the non crossing pair par-

tition induced by ε. In this case it is equal to

1

Nn

∑

k∈Mp((lh ,rh)
n
h=1,N)

ωΩ

(

a
ε(1)
k1

. . . a
ε(2n)
k2n

)

n
∏

h=1

flh

(

krh
N

)

frh

(

krh
N

)

Proof. Take a sequence of m complex-valued Riemann integrable func-
tions on the unit interval f1, . . . , fm and ε(1), . . . , ε(m) ∈ {−1, 1}.
Then

ωΩ

(

S
ε(1)
N (a, f1) . . . S

ε(m)
N (a, fm)

)

=
1

N
m
2

N
∑

k1,...,km=1

ωΩ

(

a
ε(1)
k1

· · · aε(m)
km

)

m
∏

h=1

f#
h

(

kh
N

)

,

where

f#
h (x) :=

{

fh(x) if ε(h) = −1 ,
fh(x) if ε(h) = 1 .
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As usual, the vacuum mixed moments vanish if m 6= 2n and ε does
not belong to {−1, 1}2n+ . If (lh, rh)

n
h=1 is the non crossing pair partition

induced by ε ∈ {−1, 1}2n+ , the r.h.s. above reduces to

1

Nn

∑

(lh,rh)
n
h=1∈NCPP (2n)

N
∑

kr1 ,··· ,kr2n=1

ωΩ

(

a
ε(1)
k1

· · · aε(2n)k2n

)

n
∏

h=1

flh

(

krh
N

)

frh

(

krh
N

)

.

To complete the proof, we need to check that for each j = 1, . . . , n,
one must have klj = krj to avoid the automatic vanishing of ωΩ. We
first notice that, as a consequence of (2.1) and Lemma 5.4 in [8], for
arbitrary j, h, k,m,

(3.3) aja
†
haka

†
m = δj,hδk,mala

†
l ,

where δj,h is the Kronecker symbol and l := max{j, k}, and moreover,

(3.4) ajaha
†
ka

†
m = δh,kδj,mδj)(h)aja

†
j .

We list the cases which appear.

1) (lh, rh)
n
h=1 is an interval partition, i.e. rh = lh+1 for any h = 1, . . . , n.

If there exists j = 1, . . . , n s.t. klj 6= krj , then a
ε(1)
k1

· · · aε(2n)k2n
is null, as

from (2.1).

2) (lh, rh)
n
h=1 is not an interval partition. Here, take an arbitrary j s.t.

rj 6= lj + 1. If one proves that for each lj ≤ lh < rh ≤ rj , it results
klh = krh, the thesis follows after combining this achievement with 1).
Indeed, consider the non crossing pair partition πj given by all the
blocks Vh := (lh, rh) s.t. lj < lh < rh < rj for each h. Then, this case
is split into two sub-cases:

2a) in πj one finds rh = lh + 1 for each h. Then klh = krh since (3.3)
and further klj = krj from (3.4).

2b) πj is not an interval partition. Then, fix a block Vp := (lp, rp) in πj

s.t. rp 6= lp + 1 and iterate the same arguments as in 2) and 2a). �

Lemma 3.5. For any n ∈ N, ε ≡ (lh, rh)
n
h=1 ∈ {−1, 1}2n+ and k ∈

Mp((lh, rh)), one has

(3.5) ωΩ

(

a
ε(1)
k1

· · ·aε(2n)k2n

)

=
∏

1≤h<m≤n

∆krh ,krm
(rh, rm) ,

where

∆krh ,krm
(rh, rm) := δrm)(rh) + δrh)(rm)δkrh)(krm) .
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Proof. We firstly prove that, for a generic p, if (lh, rh)
p
h=1 is a non

crossing connected pair partition and k ∈ Mp((lh, rh)
p
h=1), one has

(3.6) akl1 · · · a
†
kr1

=
∏

1≤h<m≤p

∆krh ,krm
(rh, rm)akr1a

†
kr1

.

Indeed, for p = 2 the l.h.s. above reduces to

akl1akl2a
†
kr2

a†kr1
= δr1)(r2)δkr1)(kr2)akr1a

†
kr1

as for Lemma 5.4 in [8].
For p > 2, take m the greatest index in 1, . . . , 2p s.t. ε(rm−1) = −1

and ε(rm) = ε(rm+1) = 1. Moreover, the non crossing condition gives
rm − 1 = lm, rm + 1 = rq for some q < m. This entails that on the

r.h.s. of a†krm one finds only creators, since the partition is connected.

As a consequence, again from Lemma 5.4 in [8],

akl1 · · ·a
†
kr1

= akl1 · · · a
ε(rm−2)
krm−2

aklma
†
krm

a†krq · · · a
†
kr1

= δrq)(rm)δkrq )(krm)akl1 · · · a
ε(rm−2)
krm−2

a†krq · · ·a
†
kr1

.

By (2.1) one knows the indices of the creators in the chain a†krq · · · a
†
kr1

are in a strict increasing order. The r.h.s. above thus becomes

δrq)(rm)

[

∏

rq≤rs≤r1

δkrs)(krm)

]

akl1 · · · a
ε(rj−2)
krj−2

a†krq · · · a
†
kr1

,

which is easy to see equivalent to
[

∏

h 6=m

∆krh ,krm
(rh, rm)

]

akl1 · · · a
ε(rm−2)
krm−2

a†krq · · · a
†
kr1

.

Thus (3.6) follows by a standard induction procedure. It is further easy
to check that for p < q,

∏

1≤h<m≤q

∆krh ,krm
(rh, rm)

=
∏

1≤h<m≤p

∆krh ,krm
(rh, rm)

∏

p+1≤i<j≤q

∆kri ,krj
(ri, rj) .

(3.7)

Moreover, if (lh, rh)
p
h=1 is an interval partition and k ∈ Mp((lh, rh)

n
h=1),

one has

(3.8) akl1a
†
kr1

· · · aklpa
†
krp

= akrma
†
krm

,

where krm = max{kr1, . . . , krp} as from Lemma 5.4 in [8].
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Now, for any n ∈ N, ε ∈ {−1, 1}2n+ and k ∈ Mp((lh, rh)
n
h=1), the

vacuum state on the l.h.s. of (3.5) can be factored out by suitable
vacuum expectations, each of them exhibiting non crossing connected
pair partitions (see, e.g. [9]), that is

ωΩ

(

a
ε(1)
k1

· · · aε(2n)k2n

)

= ωΩ

( r1
∏

h=1

a
ε(h)
kh

)

ωΩ

( rd1
∏

h=ld1

a
ε(h)
kh

)

· · ·ωΩ

( rdm
∏

h=ldm

a
ε(h)
kh

)

,

where m ≤ n and dj ≤ n are uniquely determined by ε, and ld1 =
r1 + 1, ld2 = rd1 + 1, . . . , ldm = rdm−1 + 1. The thesis then follows after
applying (3.6)-(3.8) to the r.h.s. above. �

The following technical result contains two parts, each of them ap-
plied to discuss the monotone and the anti-monotone (see Section 4)
CLT.

Lemma 3.6. Let n ≥ 1, f and F functions belonging to R∞([0, 1]) and
R∞([0, 1])n, respectively. Then

lim
N→∞

1

Nn+1

N
∑

k=1

f

(

k

N

) N
∑

k1,...,kn=k

F

(

k1
N
, . . . ,

kn
N

)

=

∫ 1

0

dtf(t)

∫

[t,1]n
dntF (t1, . . . , tn) ,

(3.9)

lim
N→∞

1

Nn+1

N
∑

k=1

f

(

k

N

) k
∑

k1,...,kn=1

F

(

k1
N
, . . . ,

kn
N

)

=

∫ 1

0

dtf(t)

∫

[0,t]n
dntF (t1, . . . , tn) .

(3.10)

Proof. The assertion follows after noticing that the left hand sides pro-
vide the limit of the Riemann sums for the Riemann integrals on the
right hand ones. �

Here ,we find the main result of the paper.

Theorem 3.7. Let N ∈ N and ε(1), . . . , ε(m) ∈ {−1, 1}. Then, for

each m ∈ N and f1, . . . , fm ∈ R∞([0, 1]), one has

lim
N→∞

ωΩ

(

S
ε(1)
N (a, f1) · · ·Sε(m)

N (a, fm)
)

vanishes for m odd, and for m = 2n is equal to

ωΩ

(

aε(1)(f1) · · ·aε(2n)(f2n)
)

.
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Proof. Thanks to Lemmata 3.4 and 3.5, one has that

ωΩ

(

S
ε(1)
N (a, f1) · · ·Sε(m)

N (a, fm)
)

is null when m is odd or even with ε = ε(1), . . . , ε(m) /∈ {−1, 1}2n+ . For
m = 2n and ε ∈ {−1, 1}2n+ , it is equal to

(3.11)
1

Nn

∑

k∈Mp((lh ,rh)
n
h=1,N)

F (kr1, . . . , krn)

n
∏

h=1

flh

(

krh
N

)

frh

(

krh
N

)

,

where (lh, rh)
n
h=1 is the non crossing pair partition induced by ε and

F (t1, . . . , tn) :=
∏

1≤h<m≤n

[

δrm)(rh) + δrh)(rm)δth)(tm)

]

.

By Proposition 3.3, we need to show that (3.11) converges, for N → ∞,
to

(3.12)

∫

[0,1]n

∏

1≤h<m≤n

∆th,tm(rh, rm)

n
∏

h=1

flh(th)frh(th)dth .

Notice that F ∈ R∞([0, 1]n), and further

F (t1, . . . , tn) = F (ct1, . . . , ctn)

for each c > 0. As a consequence, (3.11) reduces to

(3.13)
1

Nn

∑

k∈Mp((lh,rh)
n
h=1,N)

G

(

kr1
N

, . . . ,
krn
N

)

,

where

G(t1, . . . , tn) := F (t1, . . . , tn)
n
∏

h=1

flh(th)frh(th) .

As k ∈ Mp((lh, rh)
n
h=1, N), one has krh 6= krm when h 6= m. If for

j = 2, . . . , n, Vj denotes the totality of the sequences (kr1, . . . , krn) ∈
{1, . . . , N}n containing exactly j identical elements, it follows

N
∑

kr1 ,...,krn=1

G

(

kr1
N

, . . . ,
krn
N

)

=
∑

k∈Mp((lh,rh)
n
h=1,N)

G

(

kr1
N

, . . . ,
krn
N

)

+

n
∑

j=2

∑

(kr1 ,...,krn)∈Vj

G

(

kr1
N

, . . . ,
krn
N

)

.

If M := max{‖f1‖∞, . . . , ‖f2n‖∞}, for any j it results
∣

∣

∣

∣

∑

(kr1 ,...,krn)∈Vj

G

(

kr1
N

, . . . ,
krn
N

)
∣

∣

∣

∣

≤
(

n

j

)

M2nN(N − 1) · · · (N − n + j) ,
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and consequently one writes down (3.13) as

1

Nn

N
∑

kr1 ,...,krn=1

G

(

kr1
N

, . . . ,
krn
N

)

+ o

(

1

N

)

.

Since G is Riemann integrable in [0, 1]n, to complete the proof we need
to prove that the Riemann sum

(3.14)
1

Nn

N
∑

kr1 ,...,krn=1

G

(

kr1
N

, . . . ,
krn
N

)

converges for N → ∞ to (3.12). Indeed, for n = 1 the thesis easily
follows. When n = 2, two cases appear, according to whether ε deter-
mines the partition ((1, 2), (3, 4)) or ((1, 4), (2, 3)). We see (3.14) in the
first case gives

1

N2

N
∑

kr1 ,kr2=1

δr2)(r1)fl1

(

kr1
N

)

fr1

(

kr1
N

)

fl2

(

kr2
N

)

fr2

(

kr2
N

)

,

whose limit, for N → ∞ is

∫

[0,1]2
δr2)(r1)fl1(t1)fr1(t1)fl2(t2)fr2(t2)dt1dt2 .

In the latter case, instead, it reduces to

1

N2

N
∑

kr1 ,kr2=1

δr1)(r2)fl1

(

kr1
N

)

fr1

(

kr1
N

)

fl2

(

kr2
N

)

fr2

(

kr2
N

)

δkr1 )(kr2) .

Thus, the limit gives

∫ 1

0

δr1)(r2)fl1(t1)fr1(t1)

(
∫ t1

0

fl2(t2)fr2(t2)dt2

)

dt1

=

∫

[0,1]2
δr1)(r2)χ[0,t1)(t2)fl1(t1)fr1(t1)fl2(t2)fr2(t2)dt1dt2 ,

the first equality following from (3.10).
We now suppose that the result holds for any k < n and extend it

to n by induction. The non crossing condition yields that there exists
j ≤ n s.t. r1 = 2j. If j < n, the induction assumption directly yields
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the thesis since
∏

1≤h<m≤n

∆kh,km(rh, rm)

=

[

∏

1≤h<m≤j

∆kh,km(rh, rm)

][

∏

j+1≤h<m≤n

∆kh,km(rh, rm)

]

.

If j = n, (i.e. (lh, rh)
n
h=1 is a connected pair partition), one firstly

notices

F

(

kr1
N

, . . . ,
krn
N

)

= F

(

kr2
N

, . . . ,
krn
N

) n
∏

h=2

δr1)(rh)δkr1)(krh)

As a consequence,

1

Nn

N
∑

kr1 ,...,krn=1

G

(

kr1
N

, . . . ,
krn
N

)

=
1

Nn

N
∑

kr1=1

n
∏

h=2

δr1)(rh)fl1

(

kr1
N

)

fr1

(

kr1
N

) kr1
∑

kr2 ,...,krn=1

G

(

kr2
N

, . . . ,
krn
N

)

.

(3.15)

Now, denote

H(t1, . . . , tn) :=
∏

1≤h<m≤n

∆th ,tm(rh, rm) .

Since (3.10), the r.h.s. in (3.15) converges for N → ∞, to
∫ 1

0

(fl1(t1)fr1)(t1)

[
∫

[0,t1)n−1

H(t2, . . . , tn)

n
∏

h=2

δr1)(rh)flh(th)frh(th)dth

]

dt1

or, equivalently, to
∫

[0,1]n
fl1(t1)fr1(t1)

[

H(t2, . . . , tn)
n
∏

h=2

δr1)(rh)flh(th)(χ[0,t1)frh)(th)dth

]

dt1 ,

which is nothing else that (3.12). �

Theorem 3.7 entails as a particular case another central limit-type
result shown in the following corollary. Namely, one finds that the mo-
ments of sums of self-adjoint operators si := ai + a†i (i.e. the position
operators) converge, up to rescaling, to the moments of a random vari-
able with arcsine law supported in [−

√
2,
√
2]. Such a result has been

already obtained in [17] as a consequence of the CLT for monotone
independent random variables. Here, it is gained only by using the
algebraic form of the elements of the monotone C∗-algebra.
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Corollary 3.8. For each m ≥ 0,

lim
N→∞

ωΩ

((

1√
N

N
∑

i=1

si

)m)

=

∫

√
2

−
√
2

xm 1

π
√
2− x2

dx .

Proof. Denote symbolically by 1 the function constantly equal to 1 on
[0, 1]. By expanding the power on the l.h.s. we first note that form odd
the vacuum expectation is null. When m = 2n, arguing as in Lemma
3.4, we get

ωΩ

((

1√
N

N
∑

i=1

si

)m)

=
1

N
m
2

∑

ε∈{−1,1}m

N
∑

k1,...,km=1

ωΩ

(

a
ε(1)
k1

a
ε(2)
k2

· · · aε(m)
km

)

=
1

Nn

∑

ε∈{−1,1}2n+

N
∑

k1,...,k2n=1

ωΩ

(

a
ε(1)
k1

a
ε(2)
k2

· · · aε(2n)k2n

)

=
1

Nn

∑

ε∈{−1,1}2n+

∑

k∈Mp((lh,rh)
n
h=1,N)

ωΩ

(

a
ε(1)
k1

a
ε(2)
k2

· · · aε(2n)k2n

)

=
∑

ε∈{−1,1}2n+

ωΩ

(

S
ε(1)
N (a, 1) · · ·Sε(2n)

N (a, 1)
)

.

By Theorem 3.7, the r.h.s. above converges for N → ∞ to
∑

ε∈{−1,1}2n+

ωΩ

(

aε(1)(1) · · ·aε(2n)(1)
)

,

which is exactly ωΩ

(

(a(1) + a†(1))m
)

in the sense that the moments
above vanish for odds m, and the equality holds for m = 2n. The
proof then follows from Theorem 3.6 in [14]. �

We end the section presenting an invariance principle (known as
Donsker’s invariance principle in classical probability, see [11]) in the
monotone setting. This could be seen as as extension of some results
previously obtained in [10, 16] concerning the passage from the quan-
tum random walks constructed in discrete Monotone Fock spaces, to
the canonical position process

(

a(χ[0,t]) + a†(χ[0,t])
)

t≥0
in the continu-

ous Monotone Fock space. To deal with the invariance principle, for
N ∈ N, 0 ≤ s < t ≤ 1, we get the process

Sε
N,[s,t](a, f) :=

1√
N

[Nt]
∑

k=[Ns]+1

aεkf

(

k

N

)

,

where for x ∈ R, [x] is the unique integer s.t. [x] ≤ x < [x] + 1 and
f ∈ R

∞([0, 1]).
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Theorem 3.9. Let N ∈ N. Then, for each m ∈ N, ε(1), . . . , ε(m) ∈
{−1, 1}, f1, . . . , fm ∈ R∞([0, 1]), si < ti, i = 1, . . . , m,

lim
N→∞

ωΩ

(

S
ε(1)
N,[s1,t1]

(a, f1) · · ·Sε(m)
N,[sm,tm](a, fm)

)

=

{

0 if m is odd ,
ωΩ

(

aε(1)(f1χ[s1,t1]) · · ·aε(2n)(f2nχ[s2n,t2n]

)

if m = 2n .

(3.16)

Proof. The proof runs along the same arguments shown in Theorem
3.7. Thus, we limit ourselves to highlights the main changes appearing
in. Having achieved the vanishing of the l.h.s. in (3.16) for odd m,
when m = 2n one has that the result holds for any k = 1. Suppose
further that it is true for k < n and extend it to n. The non crossing
condition yields that there exists j ≤ n s.t. r1 = 2j. If j < n, since

1

N

[Nt]
∑

k=1

ak =
t

[Nt] + δ

[Nt]
∑

k=1

ak

for some δ ∈ [0, 1), all runs as in the proof of Theorem 3.7. One
has just to take care about the domain of {k1, . . . , k2n}, appearing
more complicated right now. A common domain can be achieved after
noticing that, for s < s and t < t,

[Nt]
∑

k=[Ns]+1

ak =

[Nt]
∑

k=[Ns]+1

akχ[
[Ns]+1,[Nt]

](k) .

If j = n, one has

ωΩ

(

S
ε(1)
N,[s1,t1]

(a, f1) · · ·Sε(2n)
N,[s2n,t2n]

(a, f2n)
)

=
1

Nn

[Nt]
∑

kr1 ,...,krn=[Ns]+1

Gχ

(

kr1
N

, . . . ,
krn
N

)

+ o

(

1

N

)

,

where

Gχ(x1, . . . , xn) := F (x1, . . . , xn)

n
∏

h=1

(

f lh
χ[

[Nslh
]+1

N
,
[Ntlh

]

N

]frhχ
[

[Nsrh
]+1

N
,
[Ntrh

]

N

]

)

(xh)

and s ≤ {slh , srh}, t ≥ {tlh , trh}, h = 1, . . . , n. Neglecting the last term
above, we can split into the product of

1

Nn

n
∏

h=2

[Nt]
∑

kr1=[Ns]+1

δr1)(rh)

(

f l1χ
[

[Nsl1
]+1

N
,
[Ntl1

]

N

]fr1χ
[

[Nsr1 ]+1

N
,
[Ntr1 ]

N

]

)(

k1
N

)
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and
kr1
∑

kr2 ,...,krn=[Ns]+1

Gχ

(

kr2
N

, . . .
krn
N

)

,

as in (3.15). Again, (3.10) and Proposition 3.3 allow to complete
straightforwardly the proof. �

4. the anti-monotone case

The structure of anti-Monotone Fock Space is obtained from the
Monotone ones just reversing the order of the admissible sequences.
More in detail, for k ≥ 1, denote I−k := {(i1, i2, . . . , ik) ⊂ N | i1 >
i2 > · · · > ik}, where for k = 0 we take I−0 := {∅}, ∅ being the empty
sequence. For each k, H−

k := ℓ2(I−k ) is the Hilbert space giving the
k-particles space and the 0-particle space H0 = ℓ2(∅) is identified with
the complex scalar field C. The discrete anti-Monotone Fock space is
then defined as F−

m =
⊕∞

k=0H
−
k .

Given a decreasing sequence α = (i1, i2, . . . , ik) of natural numbers,
eα is as usual the arbitrary element of the canonical basis of F−

m.
For i ∈ N, the anti-Monotone creation and annihilation operators

are

b†ieα :=

{

e(i,i1,i2,...,ik) if i > i1 ,
0 otherwise ,

bieα :=

{

e(i2,...,ik) if k ≥ 1 and i = i1,
0 otherwise ,

respectively. The are mutually adjoint with unital norm and satisfy

b†ib
†
j = bjbi = 0 if i ≤ j ,

bib
†
j = 0 if i 6= j ,

bib
†
i = I −∑+∞

k=i b
†
kbk .

Similar to the Monotone setting, for n ∈ N one takes Jn
− as the simplex

given by the set of sequences (t1 > t2 > · · · > tn) of length n from
J ⊆ R, with J0

− = {∅}. If µn is the positive Lebesgue measure on Rn for
any n ≥ 1, we denote H−

n the complex Hilbert space L2(Jn
−, µn) . After

taking µ0 as the Dirac unit mass on ∅ and H0 := L2(J0
−, µ0) ≡ CΩ, Ω

being the vacuum vector, the continuous Monotone Fock space is then
achieved as Γ−

m :=
⊕∞

n=0H
−
n . The inner product is

〈f, g〉n = δn,m

∫

Jn
−

f(t1, . . . , tn)g(t1, . . . , tn)dt1 · · ·dtn, f ∈ Hn, g ∈ Hm .
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Creation and annihilation operators are

[b†(f)g](t, t1, . . . tn) :=

{

f(t)g(t1, · · · tn) if t > t1 ,
0 otherwise ,

[b(f)g](t1, . . . tn) :=

{ ∫

t>t1
f(t)g(t, t1, · · · tn)dt if n ≥ 1 ,

0 if n = 0 .

We report the analogous of Lemmata 3.1 and 3.2. Although their
proof can be obtained after suitable modifications from [14], Lemmata
3.1 and 3.2, we put them below for the convenience of the reader.

Lemma 4.1. For n ∈ N, t ∈ [0, 1], f ∈ H− and G ∈ H−
n+1, one has

[b(f)G](t1, . . . tn) =

∫ 1

0

f(t)G(t, t1, · · · tn)χ(t1,1](t)dt

=

∫ 1

0

f(t)G(t, t1, · · · tn)χ[0,t)(t1)dt .

(4.1)

If G = g
∏n

h=1 gk and 1 ≤ m ≤ n, then

b(f)b†(g)b†(g1) · · · b†(gn)Ω

=

∫ 1

0

dtf(t)g(t)b†(g1χ[0,t)) · · · b†(gmχ[0,t))b
†(gm+1) · · · b†(gn)Ω

=

∫ 1

0

dtf(t)g(t)b†(g1χ[0,t)) · · · b†(gnχ[0,t))Ω .

(4.2)

Proof. Indeed, (4.2) is a particular case of (4.1). The second equality
in (4.1) follows from the previous one, since χ(s,1](t) = χ[0,t)(s), for
s, t ∈ [0, 1]. Moreover, as

χ[0,1]n+1
−

(t0, . . . , tn) =
n
∏

k=1

χ(tk ,1](tk−1), (t0, . . . , tn) ∈ [0, 1]n+1 ,

for F ∈ H−
n one has

〈F, b(f)G〉n = 〈b†(f)F,G〉n+1

=

∫

[0,1]n+1
−

f(t0)F (t1, . . . , tn)G(t0, t1, . . . , tn)dt0d
nt

=

∫

[0,1]n+1

n
∏

k=1

χ(tk ,1](tk−1)f(t0)F (t1, . . . , tn)G(t0, t1, . . . , tn)dt0d
nt ,

which is nothing else than
∫

[0,1]n
dnt

n
∏

k=2

χ(tk ,1](tk−1)F (t1, . . . , tn)

∫ 1

0

dt0f(t0)G(t0, t1, . . . , tn)χ(t1,1](t0) .
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�

Lemma 4.2. Let n ∈ N, ε ≡ (lh, rh)
n
h=1 be a non crossing connected

pair partition on {1, . . . , 2n} and f1, . . . , f2n ∈ H. Then

ωΩ

(

bε(1)(f1) · · · bε(2n)(f2n)
)

=

∫ 1

0

ωΩ

(

bε(2)(f2χ(t,1]) · · · bε(2n−1)(f2n−1χ(t,1])
)

f1(t)f2n(t)dt .
(4.3)

Proof. The thesis follows from an induction procedure on n. The case
n = 1 is trivial. For n = 2, the unique non crossing connected pair
partition is π = ((1, 4), (2, 3)). The definition of the anti-Monotone
annihilator gives

ωΩ

(

b(f1)b(f2)b
†(f3s)b

†(f4)
)

=

∫

s>t

f1(t)f4(t)f2(s)f3(s)dsdt

=

∫ 1

0

dtf1(t)f4(t)

∫ 1

0

dsf2(s)f3(s)χ(t,1](s)

=

∫ 1

0

ωΩ

(

a(f2χ(t,1])a
†(f3χ(t,1])

)

f1(t)f4(t)dt .

We turn to general n ≥ 3. The connected property gives ln 6= 2n − 1,
and the non crossing condition entails rn = ln + 1. Thus, (4.2) yields

b(fln)b
†(fln+1) · · · b†(f2n)Ω

=

∫ 1

0

dtfln(t)fln+1(t)b
†(fln+2χ[0,t)) · · · b†(f2nχ[0,t))Ω .

Consequently, the l.h.s. of (4.3) becomes
∫ 1

0

fln(t)fln+1(t)ωΩ

( ln−1
∏

h=1

bε(h)(fh)

2n
∏

k=ln+2

b†(fkχ[0,t))

)

dt .

Notice that (lh, rh)
n−1
h=1 is a connected non crossing pair partition on

{1, . . . , 2n}\{ln rn}, hence the induction assumption gives

ωΩ

( ln−1
∏

h=1

bε(h)(fh)

2n
∏

k=ln+2

b†(fkχ[0,t))

)

=

∫ 1

0

ωΩ

( ln−1
∏

h=2

bε(h)(fhχ(s,1]))

2n−1
∏

k=ln+2

b†(fkχ(s,1]χ(t,1])

)

f1(s)(f2nχ[0,t))(s)ds

For

C(s, t) :=

ln−1
∏

h=2

bε(h)(fhχ(s,1])

2n−1
∏

k=ln+2

b†(fkχ(s,1]χ[0,t)) ,
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as χ(s,1](t) = χ[0,t)(s), the l.h.s. of (4.3) becomes
∫ 1

0

dsf1(s)f2n(s)

∫ 1

0

dtωΩ(C(s, t))fln(t)(fln+1χ(s,1])(t)

=

∫ 1

0

f1(s)f2n(s)ωΩ

(

bε(2)(f2χ(s,1]) · · · bε(2n−1)(f2n−1χ(s,1])
)

ds ,

where the last equality coming from (4.2). �

Proposition 3.3 here assumes the following form:

Proposition 4.3. Let n ∈ N, (lh, rh)
n
h=1 ∈ NCPP (2n) and f1, . . . , f2n ∈

H. Then

ωΩ

(

bε(1)(f1) · · · bε(2n)(f2n)
)

=

∫

Jn

∏

1≤h<m≤n

∇th,tm(rh, rm)

n
∏

h=1

flh(th)frh(th)dth ,

where

∇th,tm(rh, rm) := δrm)(rh) + δrh)(rm)χ(th,1](tm) .

The proof runs as the Monotone counterpart. Here, one has to ex-
ploit Lemma 4.2 and the identity

∏

1≤h<m≤n

∇th,tm(rh, rm) =

n
∏

h=2

δr1)(rh)χ(t1,1](th)
∏

2≤h<m≤n

∇th,tm(rh, rm) .

Concerning the anti-Monotone discrete case, Lemma 3.5 can be rephrased
in the following way:

Lemma 4.4. For any n ∈ N, ε ≡ (lh, rh)
n
h=1 ∈ {−1, 1}2n+ and k ∈

Mp((lh, rh)), one has

ωΩ

(

b
ε(1)
k1

· · · bε(2n)k2n

)

=
∏

1≤h<m≤n

∇krh ,krm
(rh, rm) ,

where

∇krh ,krm
(rh, rm) := δrm)(rh) + δrh)(rm)δkrm )(krh) .

For the proof, very similar to that of the ”twin” result in the previous
section, one has just to use the analogue of (3.7), that is

∏

1≤h<m≤q

∇krh ,krm
(rh, rm)

=
∏

1≤h<m≤p

∇krh ,krm
(rh, rm)

∏

p+1≤i<j≤q

∇kri ,krj
(ri, rj) ,
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when p < q, and the anti-Monotone version of [8], Lemma 5.4

bkbjb
†
j = δj)(k)bk, bjb

†
jb

†
k = δj)(k)b

†
k,

bjb
†
jbk = bk, b†kbjb

†
j = b†k,

where the last two equalities hold for j ≥ k.
The CLT deals, as in the previous section, with the convergence of

vacuum mixed expectations for sums of type

Sε
N(b, f) :=

1√
N

N
∑

k=1

bεkf

(

k

N

)

, N = 1, 2 . . .

with f ∈ R
∞([0, 1]). The anti-Monotone CLT can be proven with

the help of the above results, (3.9) in Lemma 3.6 and using the same
arguments exposed in the proof of Theorem 3.7. We leave the details
of the proof to the reader.

Theorem 4.5. Let N ∈ N and ε(1), . . . , ε(m) ∈ {−1, 1}. Then, for

each m ∈ N and f1, . . . , fm ∈ R∞([0, 1]),

lim
N→∞

ωΩ(S
ε(1)
N (b, f1) · · ·Sε(m)

N (b, fm))

vanishes for m odd and, for m = 2n is equal to

ωΩ(b
ε(1)(f1) · · · bε(2n)(f2n)) .

One finally notices that the anti-Monotone form of Corollary 3.8,
giving again the weak convergence of normalised sums of position op-
erators to the arcsine law, as well as the invariance principle, can be
easily stated as well.
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