Since Palais' pioneer paper in 1963, Condition (C) in both the Palais-Smale version and Cerami's variant has been widely used in order to prove minimax existence theorems for $C^1$ functionals in Banach spaces. Here, we introduce a weaker version of these conditions so that a Deformation Lemma still holds and some critical points theorems can be stated. Such abstract results apply to $p$-Laplacian type elliptic problems.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Some abstract critical point theorems and applications |
Autori: | |
Data di pubblicazione: | 2009 |
Abstract: | Since Palais' pioneer paper in 1963, Condition (C) in both the Palais-Smale version and Cerami's variant has been widely used in order to prove minimax existence theorems for $C^1$ functionals in Banach spaces. Here, we introduce a weaker version of these conditions so that a Deformation Lemma still holds and some critical points theorems can be stated. Such abstract results apply to $p$-Laplacian type elliptic problems. |
Handle: | http://hdl.handle.net/11586/17909 |
ISBN: | 978-1-60133-011-6 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.