This paper describes the effect of introducing embeddingbased features in a learning to rank approach to entity relatedness. We define several features that exploit word- and link-embedding approaches by relying on both links and the content that appear in Wikipedia articles. These features are combined with other state-of-the-art relatedness measures by using a learning to rank framework. In the evaluation, we report the performance of each feature individually. Moreover, we investigate the contribution of each feature to the ranking function by analysing the output of a feature selection algorithm. The results of this analysis prove that features based on word and link embeddings are able to increase the performance of the learning to rank algorithm.
Learning to rank entity relatedness through embedding-based features
BASILE, PIERPAOLO;CAPUTO, ANNALINA;ROSSIELLO, GAETANO;SEMERARO, Giovanni
2016-01-01
Abstract
This paper describes the effect of introducing embeddingbased features in a learning to rank approach to entity relatedness. We define several features that exploit word- and link-embedding approaches by relying on both links and the content that appear in Wikipedia articles. These features are combined with other state-of-the-art relatedness measures by using a learning to rank framework. In the evaluation, we report the performance of each feature individually. Moreover, we investigate the contribution of each feature to the ranking function by analysing the output of a feature selection algorithm. The results of this analysis prove that features based on word and link embeddings are able to increase the performance of the learning to rank algorithm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.