Nanostructured biosilica produced by Thalassiosira weissflogii diatoms is covalently functionalized with the cyclic nitroxide 2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), an efficient scavenger of reactive oxygen species (ROS) in biological systems. Drug delivery properties of the TEMPO-functionalized biosilica are studied for Ciprofloxacin, an antimicrobial thoroughly employed in orthopedic or dental implant related infections. The resulting TEMPO-biosilica, combining Ciprofloxacin drug delivery with anti-oxidant properties, is demonstrated to be a suitable material for fibroblasts and osteoblast-like cells growth. Them bones gonna rise again: Covalent functionalization of nanostructured silica shells from diatoms with TEMPO radical endows biosilica with both drug-delivery properties and antioxidant activity. The resulting functional biosilica is demonstrated to be a suitable substrate for bone cell growth.
Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drug-Delivery and Antioxidant Properties
VONA, DANILO;DE GIGLIO, Elvira;COMETA, STEFANIA;RAGNI, ROBERTA;FARINOLA, Gianluca Maria
2015-01-01
Abstract
Nanostructured biosilica produced by Thalassiosira weissflogii diatoms is covalently functionalized with the cyclic nitroxide 2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), an efficient scavenger of reactive oxygen species (ROS) in biological systems. Drug delivery properties of the TEMPO-functionalized biosilica are studied for Ciprofloxacin, an antimicrobial thoroughly employed in orthopedic or dental implant related infections. The resulting TEMPO-biosilica, combining Ciprofloxacin drug delivery with anti-oxidant properties, is demonstrated to be a suitable material for fibroblasts and osteoblast-like cells growth. Them bones gonna rise again: Covalent functionalization of nanostructured silica shells from diatoms with TEMPO radical endows biosilica with both drug-delivery properties and antioxidant activity. The resulting functional biosilica is demonstrated to be a suitable substrate for bone cell growth.File | Dimensione | Formato | |
---|---|---|---|
2015_ChemPlusChem Dia TEMPO.pdf
non disponibili
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.