Background: The potential for a compound to cause hepatotoxicity and nephrotoxicity is a matter of extreme interest for human health risk assessment. To assess liver and kidney toxicity, repeated-dose toxicity (RDT) studies are conducted mainly on rodents. However, these tests are expensive, time-consuming and require large numbers of animals. For early toxicity screening, in silico models can be applied, reducing the costs, time and animals used. Among in silico approaches, structure-activity relationship (SAR) methods, based on the identification of chemical substructures (structural alerts, SAs) related to a particular activity (toxicity), are widely employed. Results: We identified and evaluated some SAs related to liver and kidney toxicity, using RDT data on rats taken from the hazard evaluation support system (HESS) database. We considered only SAs that gave the best percentages of true positives (TP). Conclusions: It was not possible to assign an unambiguous mode of action for all the SAs, but a mechanistic explanation is provided for some of them. Such achievements may help in the early identification of liver and renal toxicity of substances.

Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data

GADALETA, DOMENICO;NICOLOTTI, ORAZIO;
2015-01-01

Abstract

Background: The potential for a compound to cause hepatotoxicity and nephrotoxicity is a matter of extreme interest for human health risk assessment. To assess liver and kidney toxicity, repeated-dose toxicity (RDT) studies are conducted mainly on rodents. However, these tests are expensive, time-consuming and require large numbers of animals. For early toxicity screening, in silico models can be applied, reducing the costs, time and animals used. Among in silico approaches, structure-activity relationship (SAR) methods, based on the identification of chemical substructures (structural alerts, SAs) related to a particular activity (toxicity), are widely employed. Results: We identified and evaluated some SAs related to liver and kidney toxicity, using RDT data on rats taken from the hazard evaluation support system (HESS) database. We considered only SAs that gave the best percentages of true positives (TP). Conclusions: It was not possible to assign an unambiguous mode of action for all the SAs, but a mechanistic explanation is provided for some of them. Such achievements may help in the early identification of liver and renal toxicity of substances.
File in questo prodotto:
File Dimensione Formato  
70_Nico_CCJ_2015.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/172205
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact