In this paper we compare several techniques to automatically feed a graph-based recommender system with features extracted from the Linked Open Data (LOD) cloud. Specifically, we investigated whether the integration of LOD-based features can improve the effectiveness of a graph-based recommender system and to what extent the choice of the features selection technique can influence the behavior of the algorithm by endogenously inducing a higher accuracy or a higher diversity. The experimental evaluation showed a clear correlation between the choice of the feature selection technique and the ability of the algorithm to maximize a specific evaluation metric. Moreover, our algorithm fed with LODbased features was able to overcome several state-of-the-art baselines: this confirmed the effectiveness of our approach and suggested to further investigate this research line.

Automatic selection of linked open data features in graph-based recommender systems

MUSTO, CATALDO;BASILE, PIERPAOLO;de GEMMIS, MARCO;LOPS, PASQUALE;SEMERARO, Giovanni;
2015-01-01

Abstract

In this paper we compare several techniques to automatically feed a graph-based recommender system with features extracted from the Linked Open Data (LOD) cloud. Specifically, we investigated whether the integration of LOD-based features can improve the effectiveness of a graph-based recommender system and to what extent the choice of the features selection technique can influence the behavior of the algorithm by endogenously inducing a higher accuracy or a higher diversity. The experimental evaluation showed a clear correlation between the choice of the feature selection technique and the ability of the algorithm to maximize a specific evaluation metric. Moreover, our algorithm fed with LODbased features was able to overcome several state-of-the-art baselines: this confirmed the effectiveness of our approach and suggested to further investigate this research line.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/172130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact