The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem ® (−)su = |u|p−2u + h(x) in , u = 0 on Rn , where s ò (0, 1), n > 2s, is an open bounded domain of Rn with Lipschitz boundary @ , (−)s is the nonlocal Laplacian operator, 2 < p < 2*s and h ò L2( ). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential. K

Infinitely many solutions for non-local problems with broken symmetry

SALVATORE, Addolorata
2018-01-01

Abstract

The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem ® (−)su = |u|p−2u + h(x) in , u = 0 on Rn , where s ò (0, 1), n > 2s, is an open bounded domain of Rn with Lipschitz boundary @ , (−)s is the nonlocal Laplacian operator, 2 < p < 2*s and h ò L2( ). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential. K
File in questo prodotto:
File Dimensione Formato  
[2191950X - Advances in Nonlinear Analysis] Infinitely many solutions for non-local problems with broken symmetry (1).pdf

accesso aperto

Descrizione: Articolo di ricerca
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 629.25 kB
Formato Adobe PDF
629.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/171171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact