In this study a multi-objective genetic algorithm (MOGA) was applied to find the best combination of mixing energy, economic and environmental indices concerning oilseed canola production. Data were collected from oilseed farming enterprises in Mazandaran province of Iran. Life cycle assessment of canola production from cradle to farm gate was investigated to calculate the environmental emissions. Econometric modelling was applied to find the relationship functions between energy inputs and three individual output parameters including environmental emissions, output energy and economic productivity. A multi-objective model was formulated in order to maximise the output energy and benefit to cost ratio, and minimise the final score of environmental emissions in order to obtain a set of Pareto frontier. When applying CML-IA methodology, multi-objective optimization resulted in a 32.1% reduction of the total environmental emissions as well as simultaneous increase of output energy and benefit cost ratio by 24.1% and 14.2%, respectively. More specifically, the reduction of chemicals by 82.2%, nitrogen by 11.1% and other chemical fertilisers by 70.7% would be beneficial from environment, energy and economic viewpoints. This work highlights the usefulness of the implementation of MOGA in agricultural production systems to find an optimized combination of mixing energy, economic and environment

Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production

NOTARNICOLA, Bruno;TASSIELLI, GIUSEPPE;RENZULLI, PIETRO ALEXANDER
2016

Abstract

In this study a multi-objective genetic algorithm (MOGA) was applied to find the best combination of mixing energy, economic and environmental indices concerning oilseed canola production. Data were collected from oilseed farming enterprises in Mazandaran province of Iran. Life cycle assessment of canola production from cradle to farm gate was investigated to calculate the environmental emissions. Econometric modelling was applied to find the relationship functions between energy inputs and three individual output parameters including environmental emissions, output energy and economic productivity. A multi-objective model was formulated in order to maximise the output energy and benefit to cost ratio, and minimise the final score of environmental emissions in order to obtain a set of Pareto frontier. When applying CML-IA methodology, multi-objective optimization resulted in a 32.1% reduction of the total environmental emissions as well as simultaneous increase of output energy and benefit cost ratio by 24.1% and 14.2%, respectively. More specifically, the reduction of chemicals by 82.2%, nitrogen by 11.1% and other chemical fertilisers by 70.7% would be beneficial from environment, energy and economic viewpoints. This work highlights the usefulness of the implementation of MOGA in agricultural production systems to find an optimized combination of mixing energy, economic and environment
File in questo prodotto:
File Dimensione Formato  
Multiobjective algo 2016.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 671.68 kB
Formato Adobe PDF
671.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/169259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 76
social impact