In this paper we consider the problem of solving a sequence of linear systems with coefficient matrix A(alpha) = I + alpha A (or A(alpha) = alpha I + A), where a is a real paramater and A is skew-symmetric matrix. We propose to solve this problem exploiting the structure of the Schur decomposition of the skew-symmetric matrix and computing the Singular Value Decomposition of a bidiagonal matrix of halved size.

On the Solution of Skew-Symmetric Shifted Linear Systems

PUGLIESE, Alessandro
2006-01-01

Abstract

In this paper we consider the problem of solving a sequence of linear systems with coefficient matrix A(alpha) = I + alpha A (or A(alpha) = alpha I + A), where a is a real paramater and A is skew-symmetric matrix. We propose to solve this problem exploiting the structure of the Schur decomposition of the skew-symmetric matrix and computing the Singular Value Decomposition of a bidiagonal matrix of halved size.
2006
3-540-34385-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/16655
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact