Knowledge Graphs (KGs) are a widely used formalism for representing knowledge in the Web of Data. We focus on the problem of link prediction, i.e. predicting missing links in large knowledge graphs, so to discover new facts about the world. Representation learning models that embed entities and relation types in continuous vector spaces recently were used to achieve new state-of-the-art link prediction results. A limiting factor in these models is that the process of learning the optimal embedding vectors can be really time-consuming, and might even require days of computations for large KGs. In this work, we propose a principled method for sensibly reducing the learning time, while converging to more accurate link prediction models. Furthermore, we employ the proposed method for training and evaluating a set of novel and scalable models. Our extensive evaluations show significant improvements over state-of-the-art link prediction methods on several datasets.

Scalable Learning of Entity and Predicate Embeddings for Knowledge Graph Completion

MINERVINI, PASQUALE MAURO;FANIZZI, Nicola;D'AMATO, CLAUDIA;ESPOSITO, Floriana
2016-01-01

Abstract

Knowledge Graphs (KGs) are a widely used formalism for representing knowledge in the Web of Data. We focus on the problem of link prediction, i.e. predicting missing links in large knowledge graphs, so to discover new facts about the world. Representation learning models that embed entities and relation types in continuous vector spaces recently were used to achieve new state-of-the-art link prediction results. A limiting factor in these models is that the process of learning the optimal embedding vectors can be really time-consuming, and might even require days of computations for large KGs. In this work, we propose a principled method for sensibly reducing the learning time, while converging to more accurate link prediction models. Furthermore, we employ the proposed method for training and evaluating a set of novel and scalable models. Our extensive evaluations show significant improvements over state-of-the-art link prediction methods on several datasets.
2016
978-1-5090-0287-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/160098
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 12
social impact