Canine coronavirus types I (CCoV-I) and II (CCoV-II) are usually responsible for mild enteritis in dogs. While the CCoV-II genome has been completely sequenced, to date there are no complete genomic sequence data available publicly for CCoV-I. Thus, the aim of the present study was to analyze the full-length genome of a CCoV-I prototype strain that had been recovered from a dog with diarrhea in Italy. CCoV-I strain 23/03 has a genome of 30,000 nucleotides, excluding the 3' poly(A) tail, displaying the typical Alphacoronavirus-1 organization and the highest genetic relatedness to CCoV-II. However, two distinct features were observed in the CCoV-I genome: (i) the presence of an additional ORF between the spike (S) protein gene and ORF3a; (ii) the diversity of the S protein, which is more closely related to that of feline coronavirus type I and presents a furin cleavage site. The present study may contribute to a better understanding of the Alphacoronavirus-1 evolutionary pattern and may be paradigmatic of how coronaviruses evolve through gene losses, acquisition and exchanges among different members.

Full-length genome analysis of canine coronavirus type I

DECARO, Nicola;MARI, VIVIANA;ELIA, Gabriella;LANAVE, GIANVITO;DOWGIER, GIULIA;MARTELLA, Vito;BUONAVOGLIA, Canio
2015-01-01

Abstract

Canine coronavirus types I (CCoV-I) and II (CCoV-II) are usually responsible for mild enteritis in dogs. While the CCoV-II genome has been completely sequenced, to date there are no complete genomic sequence data available publicly for CCoV-I. Thus, the aim of the present study was to analyze the full-length genome of a CCoV-I prototype strain that had been recovered from a dog with diarrhea in Italy. CCoV-I strain 23/03 has a genome of 30,000 nucleotides, excluding the 3' poly(A) tail, displaying the typical Alphacoronavirus-1 organization and the highest genetic relatedness to CCoV-II. However, two distinct features were observed in the CCoV-I genome: (i) the presence of an additional ORF between the spike (S) protein gene and ORF3a; (ii) the diversity of the S protein, which is more closely related to that of feline coronavirus type I and presents a furin cleavage site. The present study may contribute to a better understanding of the Alphacoronavirus-1 evolutionary pattern and may be paradigmatic of how coronaviruses evolve through gene losses, acquisition and exchanges among different members.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168170215300228-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 334.53 kB
Formato Adobe PDF
334.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/144364
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact