A set of basic aryl-group-containing compounds was synthesized with the aim of developing potent and selective P-glycoprotein (P-gp) modulators that are able to reverse multidrug resistance (MDR). The natures of the spacer (dicyclohexylamine or dialkylamine) and the aryl moieties were modified to investigate selectivity and the mechanism of P-gp interaction. The inhibitory activities of the compounds toward P-gp, multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP), the most relevant ATP binding cassette (ABC) transporters for MDR, were evaluated. The mechanism of P-gp interaction for each compound was investigated with three biological assays: apparent permeability (Papp ) determination (B→A/A→B) in Caco-2 cell monolayers, ATP cell depletion, and inhibition of Calcein-AM transport in MDCK-MDR1 cells. These assays allowed us to estimate the selectivity of the compounds for the three efflux pumps and to identify the structural requirements that define the P-gp-interaction profile. All dicyclohexylamine derivatives were found to be P-gp substrates, whereas one dialkylamine derivative was shown to be a P-gp inhibitor. The good MRP1 activity of one cis/cis isomer highlighted this as a lead candidate for the development of MRP1 ligands.

Arylamino Esters As P-Glycoprotein Modulators: SAR Studies to Establish Requirements for Potency and Selectivity

PERRONE, MARIA GRAZIA;CONTINO, MARIALESSANDRA;COLABUFO, Nicola Antonio
2015-01-01

Abstract

A set of basic aryl-group-containing compounds was synthesized with the aim of developing potent and selective P-glycoprotein (P-gp) modulators that are able to reverse multidrug resistance (MDR). The natures of the spacer (dicyclohexylamine or dialkylamine) and the aryl moieties were modified to investigate selectivity and the mechanism of P-gp interaction. The inhibitory activities of the compounds toward P-gp, multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP), the most relevant ATP binding cassette (ABC) transporters for MDR, were evaluated. The mechanism of P-gp interaction for each compound was investigated with three biological assays: apparent permeability (Papp ) determination (B→A/A→B) in Caco-2 cell monolayers, ATP cell depletion, and inhibition of Calcein-AM transport in MDCK-MDR1 cells. These assays allowed us to estimate the selectivity of the compounds for the three efflux pumps and to identify the structural requirements that define the P-gp-interaction profile. All dicyclohexylamine derivatives were found to be P-gp substrates, whereas one dialkylamine derivative was shown to be a P-gp inhibitor. The good MRP1 activity of one cis/cis isomer highlighted this as a lead candidate for the development of MRP1 ligands.
File in questo prodotto:
File Dimensione Formato  
ChemMedChem 2015, 10,1339 –1343.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 422.82 kB
Formato Adobe PDF
422.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/141562
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact