Let us consider the Dirichlet problem {L-mu[u] := (-Delta)(m)u - mu u/vertical bar X vertical bar(2m) = u(2*-1) + lambda u, u &gt; 0 in B D(beta)u vertical bar(partial derivative B) = 0 for vertical bar beta vertical bar &lt;= m - 1 where B is the unit ball in R-n, n &gt; 2m, 2* = 2n/(n - 2m). We find that, whatever n may be, this problem is critical (in the sense of Pucci-Serrin and Grunau) depending on the value of mu is an element of[0, (mu) over bar), (mu) over bar being the best constant in Rellich inequality. The present work extends to the perturbed operator (-Delta)(m) - mu vertical bar x vertical bar I-2m a well-known result by Grunau regarding the polyharmonic operator (see Grunau (1996)

### Critical behavior for the polyharmonic operator with Hardy potential

#### Abstract

Let us consider the Dirichlet problem {L-mu[u] := (-Delta)(m)u - mu u/vertical bar X vertical bar(2m) = u(2*-1) + lambda u, u > 0 in B D(beta)u vertical bar(partial derivative B) = 0 for vertical bar beta vertical bar <= m - 1 where B is the unit ball in R-n, n > 2m, 2* = 2n/(n - 2m). We find that, whatever n may be, this problem is critical (in the sense of Pucci-Serrin and Grunau) depending on the value of mu is an element of[0, (mu) over bar), (mu) over bar being the best constant in Rellich inequality. The present work extends to the perturbed operator (-Delta)(m) - mu vertical bar x vertical bar I-2m a well-known result by Grunau regarding the polyharmonic operator (see Grunau (1996)
##### Scheda breve Scheda completa Scheda completa (DC)
2015
File in questo prodotto:
File
jannelli-criticalBehav-published.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 479.3 kB
Critical behaviour for the polyharmonic operator with Hardy potential_rev1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 432.79 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11586/140403`
• ND
• 7
• 7