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Abstract. Let us consider the Dirichlet problemLµ[u] := (−∆)mu− µ u

|x|2m
= u2

∗−1 + λu, u > 0 in B

Dβu|∂B = 0 for |β| ≤ m− 1

where B is the unit ball in Rn, n > 2m, 2∗ = 2n/(n− 2m). We find that, whatever n may
be, this problem is critical (in the sense of Pucci–Serrin and Grunau) depending on the value
of µ ∈ [0, µ), µ being the best constant in Rellich inequality. The present work extends to
the perturbed operator (−∆)m − µ|x|−2mI a well–known result by Grunau regarding the
polyharmonic operator (see [6]).

1. Introduction

The present paper deals with non–existence results for weak solutions to the problem

(1.1)

Lµ[u] := (−∆)mu− µ u

|x|2m
= u2∗−1 + λu, u > 0 in B

u ∈ Hm
0,r(B)

where B is the unit ball in Rn, n ≥ 2m + 1 and Hm
0,r(B) is the space of the functions

v ∈ Hm
0 (B) with spherical symmetry.

Throughout this paper we shall assume that 0 ≤ µ < µ, where µ is the best constant for
the Rellich inequality (see the Notations below)

(1.2)

∫
Rn

|Dmu|2 dx ≥ µ

∫
Rn

u2

|x|2m
dx ∀u ∈ Dm,2(Rn)

which is not achieved by any u ∈ Dm,2(Rn) (see [3], [12]). Being µ < µ, Lµ is positive
defined.

Let us set

(1.3) Pµ(z) = (−1)m
m∏
i=1

(z + n− 2i)(z + 2− 2i)− µ ;

this polynomial will play a crucial role in all our discussion, as it is a sort of “symbol” for
Lµ. We know from [3], [12] that

(1.4) µ = P0(m− n/2) = (−4)m(1−m/2− n/4)m(n/4−m/2)m
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where ah :=
h−1∏
j=0

(a+ j) (see the Notations below).

The behavior of problem (1.1) is deeply influenced by the amount of µ, and we shall obtain
non–existence results depending on µ and λ.

More precisely, let us define

(1.5) µ1 :=

{
P0(−n/2) = (−4)m(1− n/4)m(n/4)m n ≥ 4m+ 1;

0 2m+ 1 ≤ n ≤ 4m.

An elementary investigation about P0(x) for x ∈ [2m− n, 0] shows that 0 ≤ µ1 < µ.

Definition 1. We say that µ is critical for Lµ if µ1 < µ < µ when n ≥ 4m, or µ1 ≤ µ < µ
when 2m+ 1 ≤ n ≤ 4m− 1.

In other words, any µ ∈ [0, µ) is critical when 2m + 1 ≤ n ≤ 4m − 1 ; any µ ∈ (µ1, µ) is
critical for n ≥ 4m.

Now we may state our theorem.

Theorem 1. If µ is critical for Lµ, then there exists λ∗ = λ∗(µ, n) > 0 such that for λ < λ∗
problem (1.1) admits no nontrivial positive radial weak solutions in Hm

0 (B).

A few words of comment. Theorem 1 generalizes to the case of problem (1.1) the well-
known result by Grunau (see [6]) regarding the case µ = 0, i.e. when the linear operator is
the polyharmonic operator (−∆)m, and indeed, when possible, we have tried to transpose
to our case Grunau’s reasonment, which in turn originates from Theorem 1.2” of [1].

In [6] Grunau shows that, when n = 2m + 1 . . . 4m − 1, (−∆)m has a critical behavior,
which means that there exists λ∗ > 0 such that the critical problem for (−∆)m has not
positive radial solution for λ < λ∗; this was a considerable step forward in proving the well-
known conjecture by Pucci-Serrin (see [13]), which states the same claim, but without the
restriction of the positivity of u.

Now, if we consider the fundamental solution of (−∆)m in Rn, i.e. |x|2m−n, we may remark
that |x|2m−n belongs to L2

loc iff n = 2m + 1 . . . 4m − 1. In the light of the results of Pucci-
Serrin and Grunau, this is not a coincidence: in [7] it is shown for some classes of problems,
each class depending on a continuous parameter, that

critical behavior occours when the (generalized) fundamental solution (depending on the pa-
rameter) belongs to L2

loc.

For more detailed motivation of this principle we refer to [7]; what is relevant here is that
this principle applies in the present work. To see this, let us remark (see Section 2) that |x|σ
solves Lµ[|x|σ] = 0 in Rn \ {0} iff Pµ(σ) = 0; now, if we denote by β1 = β1(µ) the continuous
branch among the roots of Pµ which starts from 2m−n when µ = 0, we may reasonably call
|x|β1 the (generalized) fundamental solution of Lµ. Then it is easy to see that µ is critical in
the sense of our Definition 1 iff β1 > −n/2, which means that the (generalized) fundamental
solution is in L2

loc.
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When m = 1, 2, the nonlinear critical problem for Lµ has been extensively studied in [7],
[2] respectively, where the analogous of Theorem 1 has been proved in a stronger version:
namely it is proved that, when µ is critical, there exist no nontrivial radial solutions u
for λ > 0 sufficiently small, without any assumption about the positivity of u (indeed the
theorem in [7] is enounced for positive solutions, but from the proof it is evident that the
theorem holds for any radial solution). This is achieved by means of sharp radial Pohozaev
identities and, when m = 2, suitable Hardy inequalities; this technique does not seem to
apply to Lµ for general m.

Another remark: many results about critical behavior of nonlinear critical problems state
nonexistence theorems of classical solutions. But in our case, when µ > 0, we must face
singular (hence weak) solutions, which in general have a pole at the origin. This, among
other technicalities, leads to state a Pohozaev identity for weak solutions (see Section 4) in
a ball.

This paper is organized as follows: in Section 2 we give an explicit representation formula
for the solution to the linear problem

(1.6)

{
Lµ[u] = f in B ,

u ∈ Hm
0,r(B)

in terms of the roots of the polynomial Pµ(z). Section 3 is devoted to the study of the
auxiliary function wµ, which solves the problem

(1.7)


Lµ[wµ] = 0 in B

wµ ∈ Hm
r (B)

wµ(1) = · · · = w(m−2)
µ (1) = 0, w(m−1)

µ (1) = (−1)m−1 ,

where Hm
r (B) is the closed subspace of the functions of Hm(B) with spherical symmetry; by

coupling problems (1.6) and (1.7) we shall get useful estimates about u when f is the right
hand side of problem (1.1).

In Section 4 we derive a Pohozaev identity for weak solutions to (1.1), and finally in
Section 5 we collect together all the informations, so proving Theorem 1.

Notations

u∗ The Schwarz symmetrization of u (see, for instance, [10]).

2∗
2n

n− 2m
, the limit exponent for the Sobolev embedding Hm(Ω) ⊂ Lp(Ω);

ah Rising factorial power (see [5]). For a ∈ R and h non negative integer it is
defined as

ah =


h−1∏
j=0

(a+ j) m ≥ 1 ;

1 h = 0 .
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ah Falling factorial power (see [5]). For a ∈ R and h non negative integer it is
defined as

ah =


h−1∏
j=0

(a− j) m ≥ 1 ;

1 h = 0 .

ρz For any ρ > 0 and z = α + iβ with α, β ∈ R we set

ρz = ρα
(
cos(β log ρ) + i sin(β log ρ)

)
.

H(x) Heaviside function. H(x) = 1 for x ≥ 0, H(x) = 0 for x < 0.

δρ(s) One dimensional Dirac delta at point ρ. The distribution δρ(s) is defined as
〈δρ(s), ϕ(s)〉 = ϕ(ρ) for any test function ϕ ∈ Cc(R).

Dmu ∆m/2u if m is even; ∇∆(m−1)/2u if m is odd.

‖u‖m,2 ‖Dmu‖L2(Ω)

Dm,2(Rn) The completion of C∞c (Rn) with respect to the norm ‖u‖m,2.

Hm(Ω) Hilbertian Sobolev space of the m–times weakly differentiable functions in Ω
with L2 derivatives.

Hm
0 (Ω) In bounded domains Ω, the completion of C∞c (Ω) with respect to the norm

‖u‖m,2.

B B = {x ∈ Rn : |x| < 1}

Xr If X is any function space on Rn or B, Xr is the subspace of the functions in
X with spherical symmetry.

Γ(z) Euler’s Gamma function; Γ(z) =

∫ ∞
0

e−ttz−1 dt (z ∈ C, Re z > 0).

ωn The n− 1 dimensional measure of the euclidean sphere Sn; ωn =
nπn/2

Γ(1 + n
2
)
.
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2. The linear radial problem

The main goal of this section is to give an explicit representation formula for the solution
to the equation

(2.1)

(−∆)mu− µ u

|x|2m
= f in B

u ∈ Hm
0,r(B)

where f ∈ L2∗′

r (B). We shall achieve this kind of results by means of elementary ODE
techniques.

Lemma 2.1. Let z1, z2 . . . zk be k distinct complex numbers. Then:

k∑
i=1

zhi∏
j 6=i

(zi − zj)
=


0 0 ≤ h ≤ k − 2

1 h = k − 1

z1 + · · ·+ zm h = k ;

(2.2)

k∑
i=1

zi
h∏

j 6=i
(zi − zj)

=


0 0 ≤ h ≤ k − 2

1 h = k − 1

z1 + · · ·+ zm −
k(k − 1)

2
h = k .

(2.3)

Proof. As for (2.2) see [11], Section 1.2.3, Exercise 33. Equation (2.3) is a trivial consequence
of (2.2) by means of linear combinations. �

Definition 2. Let

(2.4) Γ =
dk

dρk
+

k∑
i=1

ai
ρi

dk−i

dρk−i

be an homogeneous linear differential operator defined for ρ ∈ (0,∞) with coefficients ai ∈ R.
We define the symbol of Γ as the polynomial

(2.5) P (z) = zk +
k∑
i=1

aiz
k−i

and we call characteristic roots its (real or conjugate complex) roots.

Remark 1. We obviously have that Γ[ρz] = 0 if and only if P (z) = 0. Moreover, if z is a root
with multiplicity p, then Γ[ρz log ρ] = · · · = Γ[ρz(log ρ)p−1] = 0.

Proposition 2.2. Let Γ as in Definition 2, and let us suppose that its symbol P has distinct
roots z1, z2 . . . zk. Finally, let

(2.6) ψ(ρ, s) = −

(
k∑
i=1

ρzisk−1−zi∏
j 6=i

(zi − zj)

)
H(s− ρ) , s > 0 .

Then Γ(ψ(ρ, s)) = δρ(s); moreover, if k ≥ 2, then ψ(ρ, s) is of Ck−2 class with respect to ρ
for any fixed s > 0.
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Proof. Let us define

(2.7) g(ρ, s) = −
k∑
i=1

ρzisk−1−zi∏
j 6=i

(zi − zj)
;

then, by (2.3), we get

(2.8)
∂hg

∂ρh
(ρ, ρ) =

{
0 0 ≤ h ≤ k − 2

−1 h = k − 1

and therefore

(2.9)
∂hψ

∂ρh
(ρ, s) =


∂hg

∂ρh
(ρ, s)H(s− ρ) 0 ≤ h ≤ k − 1 ;

∂kg

∂ρk
(ρ, s)H(s− ρ) + δρ(s) h = k .

Hence

Γ(ψ(ρ, s)) = −

(
k∑
i=1

Γ(ρzi)sk−1−zi∏
j 6=i

(zi − zj)

)
H(s− ρ) + δρ(s) = δρ(s) .

As for the regularity of ψ(ρ, s) with respect to ρ, it is an immediate consequence of (2.8). �

Remark 2. Obviously the same conclusion of Proposition 2.2 holds for any function ψ1(ρ, s) =

ψ(ρ, s) +
k∑
i=1

fi(s)ρ
zi with arbitrary fi(s).

Remark 3. When double roots occour, (2.6) must be modified accordingly. If, say, z2 = z1,
then (2.6) becomes

ψ(ρ, s) =

(
− ρz1sk−1−z1∏
j≥3

(z1 − zj)

(∑
j≥3

1

z1 − zj
− log

ρ

s

)

−
k∑
i=3

ρzisk−1−zi

(z1 − zi)2
∏
j≥3

(zi − zj)

)
H(s− ρ) , s > 0 .

(2.10)

Of course (2.10) is nothing but the limit of (2.6) for z2 → z1.

From now on we shall denote by Lµ both the partial differential operator in cartesian

coordinates (−∆)m − µ

|x|2m
I and the ordinary differential operator(
− d2

dρ2
− (n− 1)

ρ

d

dρ

)m
− µ

ρ2m
I .

From the context it will be always clear if we consider Lµ as a PDE or a ODE operator.
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We specialize Proposition 2.2 (together with Remark 2) to the case Γ = Lµ. To this aim,
we must discuss about the characteristic roots of Lµ. The following assertions, contained in
Remarks 4-8, are quite easily verified:

Remark 4. Let

(2.11) Pµ(z) = (−1)m
m∏
i=1

(x+ n− 2i)(x+ 2− 2i)− µ ;

then Pµ is the symbol of Lµ.

Remark 5. The line x = m − n/2 plays a relevant role, as µ = P0(m − n/2) and Pµ(z) has
the following symmetry property:

(2.12) Pµ(z) = Pµ(2m− n− z) .

Hence Pµ(z) has m roots in the half plane Re(z) ≥ m − n/2 and m roots in the half plane
Re(z) ≤ m− n/2.

Remark 6. The roots of Pµ(z) are all real for µ > 0 sufficiently small. When µ increases, up
to m− 1 pairs of complex conjugate roots may appear, their number depending on n,m, µ.
Anyway, for any µ ∈ [0, µ) there is one and only one real root of Pµ(z) in the interval
(m− n/2, 0]. Hence, when µ ∈ [0, µ) we set

(2.13)

α1 the unique real root in (m− n/2, 0];

αi , i = 2 . . .m the remaining m− 1 roots

in the half plane Re(z) ≥ m− n/2;

β1 = n− 2m− α1 the unique real root in [2m− n,m− n/2);

βi = n− 2m− αi , i = 2 . . .m the remaining m− 1 roots

in the half plane Re(z) ≤ m− n/2.

Remark 7. P ′0(z) has 2m− 1 distinct real roots. Being P ′µ(z) = P ′0(z), Pµ(z) has all distinct
roots but for a finite number of values of µ. Coincident roots may only be real ones, and
they may have only multiplicity equal to 2. When µ ∈ (0, µ), this may happen only if
m ≥ 3 and µ = P0(xk), where xk is the unique root of P ′0(x) in the interval [4k − 2, 4k],
1 ≤ k ≤ (m− 1)/2. In particular this implies that, when µ ∈ [0, µ),

α1,Re(α2) . . .Re(αm) > m− n/2 ;

β1,Re(β2) . . .Re(βm) < m− n/2 .
(2.14)

Remark 8. It holds µ1 = max{0, P0(−n/2)}. Hence µ is critical for Lµ iff β1 > −n/2.

Figure 1 shows the graph of P0(x) compared with different values of µ, which provides a
visual representation of some of the preceeding remarks.
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Figure 1. P0(x) = µ

Now we want to prove some more subtle properties regarding the location of the roots of
Pµ(z). To this aim we need the following

Proposition 2.3. Let f ∈ L2∗′

r (Rn). Then the problem

(2.15) (−∆)mu− µ

|x|2m
u = f ; u ∈ Dm,2r

has one and only one solution. Moreover, if f is positive and decreasing, then u is positive
and decreasing too.

Proof. The solution u to (2.15) is the unique minimum for the strictly convex functional
J : Dm,2r → R defined by

(2.16) J [w] =
1

2

∫
Rn

|Dmw|2 − µ

2

∫
Rn

u2

|x|2m
−
∫
Rn

fu .

Now let f be positive and decreasing, so that f = f ∗, where ( )∗ denotes the Schwarz
symmetrization. Let {un} ⊂ Dr be a sequence of smooth functions such that un → u in
Dm,2r , and let vn in Dm,2r such that

(2.17) (−∆)kvn = ((−∆)kun)∗ , k =

{
m/2 m even

(m− 1)/2 m odd
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Arguing as in [9], by means of Talenti comparison theorem (see [15]) we know that vn ≥ u∗n,
hence

‖Dmvn‖2
2 = ‖Dmun‖2

2 (m even); ‖Dmvn‖2
2 ≤ ‖Dmun‖2

2 (m odd);∫
Rn

v2
n

|x|2m
≥
∫
Rn

u2
n

|x|2m
;

∫
Rn

fvn ≥
∫
Rn

fu∗n =

∫
Rn

f ∗u∗n ≥
∫
Rn

fun ;
(2.18)

therefore J [vn] ≤ J [un]. Being Schwarz symmetrization non expansive, vn is a Cauchy
sequence inDm,2r ; if v = lim

n
vn, we have that v = u, and therefore u is positive and decreasing.

�

Now we give a representation for the solution u to (2.15) in terms of the characteristic
roots of Pµ(z):

Proposition 2.4. Let µ ∈ [0, µ) be such that Pµ(z) has distinct roots, and let

g1(ρ, s) = (−1)m
m∑
i=1

ρβis2m−1−βi∏
j 6=i

(βi − βj)
∏
j

(βi − αj)

g2(ρ, s) = (−1)m−1

m∑
i=1

ραis2m−1−αi∏
j 6=i

(αi − αj)
∏
j

(αi − βj)

(2.19)

where αi, βi are defined in (2.13). Then the solution u to (2.15) is given by

(2.20) u(ρ) =

∫ ρ

0

g1(ρ, s)f(s) ds+

∫ ∞
ρ

g2(ρ, s)f(s) ds , ρ > 0 .

Proof. Let us suppose at first that f ∈ Dr. By means of Proposition 2.2 we easily get that

(2.21) Lµ[(g2(ρ, s)− g1(ρ, s))H(s− ρ)] = δρ(s)

and therefore (see also Remark 2)

(2.22) Lµ[g1(ρ, s) + (g2(ρ, s)− g1(ρ, s))H(s− ρ)] = δρ(s) ;

hence the function u(ρ) defined by (2.20) is a solution in the interval (0,∞) to the ODE

Lµ[u] = f , and all the other solutions to this ODE are given by u +
∑
i

c′iρ
βi + c′′i ρ

αi for

arbitrary constants c′i, c
′′
i . We want to show that the solution to (2.15) is the one with

c′i = c′′i = 0 for i = 1 . . .m, i.e. it is u(ρ) as defined in (2.20). To this aim, let us estimate u
when ρ→ 0 and when ρ→∞.

Remembering that f is bounded and that Re(βi) < 0, from

(2.23)

∣∣∣∣∫ ρ

0

ρβis2m−1−βif(s) ds

∣∣∣∣ ≤ ∫ ρ

0

(
s

ρ

)−Re(βi)

s2m−1|f(s)| ds

we get

(2.24)

∫ ρ

0

g1(ρ, s)f(s) ds = O(ρ2m) (ρ→ 0) .
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As for g2, let us distinguish between Re(αi) ≥ 0 and Re(αi) < 0. In the first case we have

(2.25)

∣∣∣∣∫ ∞
ρ

ραis2m−1−αif(s) ds

∣∣∣∣ ≤ ∫ ∞
ρ

(ρ
s

)Re(αi)

s2m−1|f(s)| ds ≤
∫ ∞

0

s2m−1|f(s)| ds = C

while, when Re(αi) < 0, we can argue as follows:∣∣∣∣∫ ∞
ρ

ραis2m−1−αif(s) ds

∣∣∣∣ = ραi

∣∣∣∣∫ ∞
ρ

s2m−1−αif(s) ds

∣∣∣∣
≤ ραi

∫ ∞
0

s2m−1−Re(αi)|f(s)| ds = Cραi .

(2.26)

Setting γ1 = min{α1,Re(α2) . . .Re(αm)}, we can conclude from the preceeding relations that

(2.27) u(ρ) = O(ργ1) (ρ→ 0) .

Now let us estimate u(ρ) for ρ→∞. Having f compact support we get

(2.28)

∫ ∞
ρ

g2(ρ, s)f(s) ds = 0 for ρ sufficiently large;

on the other hand ∣∣∣∣∫ ρ

0

ρβis2m−1−βif(s) ds

∣∣∣∣ = ρβi
∣∣∣∣∫ ρ

0

s2m−1−βif(s) ds

∣∣∣∣
≤ ρβi

∫ ∞
0

s2m−1−Re(βi)|f(s)| ds = Cρβi .

(2.29)

Setting γ2 = max{β1,Re(β2) . . .Re(βm)}, we can conclude

(2.30) u(ρ) = O(ργ2) (ρ→∞) .

Summing up, u(ρ) is a continuous function on (0,∞) which verifies (2.27) and (2.30); being
γ2 < m− n/2 < γ1, we get that u(x) ∈ L2∗(Rn), and indeed the solution to equation (2.15)
has this summability, belonging to Dm,2. Hence the conclusion of the proof in the case f ∈ Dr
follows by observing that u +

∑
i

c′iρ
βi + c′′i ρ

αi belongs to L2∗(Rn) if and only if c′i = c′′i = 0

for i = 1 . . .m.
Now we want to pass to the general case f ∈ L2∗′

r (Rn). Let {fn} ⊂ Dr such that fn → f

in L2∗′

r (Rn), and let us denote by un, u the solutions to (2.15) with right hand side equal to
fn, f respectively; then, in particular, un(ρ)→ u(ρ). Hence, if we show that for any ρ > 0∫ ρ

0

g1(ρ, s)fn(s) ds→
∫ ρ

0

g1(ρ, s)f(s) ds∫ ∞
ρ

g2(ρ, s)fn(s) ds→
∫ ∞
ρ

g2(ρ, s)f(s) ds

(2.31)

we are done. But (2.31) holds true; indeed, by (2.14) we know that, for any ρ > 0,

(2.32) |x|2m−n−βi ∈ L2∗({x : |x| < ρ}) ; |x|2m−n−αi ∈ L2∗({x : |x| > ρ}) ;
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therefore ∣∣∣∣∫ ρ

0

s2m−1−βi(f(s)− fn(s)) ds

∣∣∣∣ ≤∫ ρ

0

s2m−n−Re(βi)|f(s)− fn(s)|sn−1 ds ≤ C‖f − fn‖2∗′ ;∣∣∣∣∫ ∞
ρ

s2m−1−αi(f(s)− fn(s)) ds

∣∣∣∣ ≤∫ ∞
ρ

s2m−n−Re(αi)|f(s)− fn(s)|sn−1 ds ≤ C‖f − fn‖2∗′ .

(2.33)

�

Remark 9. When µ = µ̃ is one of those (finite number of) values for which double real
roots occour, the definition of g1, g2 in (2.19) must be modified; the expression of g1, g2 may
be easily computated passing to the limit for µ → µ̃ (see Remark 3). However this is not
relevant at all in what follows.

As a consequence of Proposition 2.4 we get the following result of location of the charac-
teristic roots:

Corollary 2.5. The following estimate holds true:

(2.34) α1 ≤ Re(αi) , β1 ≥ Re(βi) , i = 2 . . .m .

Proof. Let f ∈ Dr be positive and decreasing, and let u the solution to (2.15) for such f .
From Proposition 2.3 we know that u is positive decreasing, while from Proposition 2.4 and
its proof we know that

(2.35) u(ρ) =
∑

Re(αi)<0

kiρ
αi

∫ ∞
0

s2m−1−αif(s) ds+O(1) (ρ→ 0)

where ki are universal constants from (2.19). If there exists j ≥ 2 such that Re(αj) < α1, by

choosing f ∈ Dr positive decreasing and such that

∫ ∞
0

s2m−1−αif(s) ds 6= 0, we get by (2.35)

that u oscillates around the ρ-axis near ρ = 0, which is absurd. Quite analogous reasonment
if two or more characteristic roots verify Re(αj) < α1. Obviously the result about the βi
follows by symmetry. �

Now let us come to the representation formula for the solution to problem (2.1). All
we have to do is to modify (2.20) (we may think f ≡ 0 for ρ > 1) in such a way that
u(1) = · · · = u(m−1)(1) = 0.

To get this we must add to g1(ρ, s), g2(ρ, s) a suitable linear combination of the functions
ραi , ρβi in such a way that the boundary conditions at ρ = 1 are fulfilled. So let us denote
by g3(ρ, s) the term which will be added to g1(ρ, s), g2(ρ, s); we have

(2.36) g3(ρ, s) =
m∑
i=1

ci(s)ρ
αi +

m∑
i=1

di(s)ρ
βi
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and we want to determine ci(s), di(s) in such a way that

(2.37) u(ρ) =

∫ ρ

0

g1(ρ, s)f(s) ds+

∫ 1

ρ

g2(ρ, s)f(s) ds+

∫ 1

0

g3(ρ, s)f(s) ds , ρ ∈ (0, 1] .

solves problem (2.1).
But u must belong to Hm

0,r(B), and this implies that d1(s) = · · · = dm(s) = 0; now the

boundary conditions u(1) = · · · = u(m−1)(1) = 0 become m relations in the m unknown
functions ci(s); namely

(2.38)
m∑
i=1

αhi ci(s) +

(
∂g1

∂ρ

)h
(1, s) = 0 , h = 0 . . .m− 1 .

If Pµ has all distinct roots, the coefficient matrix in system is invertible. After some calcu-
lations, we find

(2.39) ci(s) = (−1)m−1
∑
j

s2m−1−βj

(βj − αi)
∏
h6=i

(αi − αh)
∏
h6=j

(βj − βh)
.

Hence we get the following

Proposition 2.6. Let µ ∈ [0, µ) be such that Pµ(z) has distinct roots; let g1, g2 defined
by (2.19) and

(2.40) g3(ρ, s) = (−1)m−1
∑
i,j

s2m−1−βjραi

(βj − αi)
∏
h6=i

(αi − αh)
∏
h6=j

(βj − βh)

where αi, βi are defined in (2.13). Finally, let

(2.41) h(ρ, s) = g1(ρ, s) + (g2(ρ, s)− g1(ρ, s))H(s− ρ) + g3(ρ, s) .

Then the solution u to (2.1) is given by

(2.42) u(ρ) =

∫ 1

0

h(ρ, s) f(s) ds , ρ ∈ (0, 1] .

Remark 10. Again, as in Remark 9, when double real characteristic roots occour, formula
(2.42) must be changed accordingly. This, however, has no relevance in what follows.

Proposition 2.7. The solution u(ρ) to (2.1) belongs to C2m−1
(
(0, 1]

)
, and

(2.43)
( ∂
∂ρ

)j
u(ρ) =

∫ 1

0

( ∂
∂ρ

)j
h(ρ, s) f(s) ds , ρ ∈ (0, 1] .

Proof. The proof is similar to the proof of Proposition 2.2. Indeed, in our case (2.8) becomes

(2.44)
( ∂
∂ρ

)j
(g2 − g1)

s=ρ
= 0 , j = 1 . . . 2m− 2 ;
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therefore, in the distributional sense,( ∂
∂ρ

)j
h(ρ, s) =

( ∂
∂ρ

)j
g1(ρ, s) +

(( ∂
∂ρ

)j
g2(ρ, s)−

( ∂
∂ρ

)j
g1(ρ, s)

)
H(s− ρ)

+
( ∂
∂ρ

)j
g3(ρ, s) , 0 ≤ j ≤ 2m− 1 ;

(2.45)

now our claim easily follows. �

As a consequence we may state the following two propositions:

Proposition 2.8. Let µ ∈ [0, µ), and let u be a solution to (2.1), with f ∈ L2∗′

r (B) such that
ρn/2+mf(ρ) is bounded. Then, for any δ > 0 ∃Cδ such that

(2.46) |u(h)(ρ)| ≤ Cδρ
−n/2+m−h−δ 0 ≤ h ≤ 2m− 1, ρ ∈ (0, 1] .

Proof. Let us fix the order of derivation h. We shall use (2.43) and the structure of h(ρ, s).
The right hand side of (2.43) is a linear combination of terms like

(2.47) ρβi−h
∫ ρ

0

s2m−1−βif(s) ds , ραi−h
∫ 1

ρ

s2m−1−αif(s) ds , ραi−h
∫ 1

ρ

s2m−1−βjf(s) ds

which we shall estimate. Taking (2.14) into account, let δ > 0 so small that β1+δ < −n/2+m.
We have ∣∣∣∣ρβi−h ∫ ρ

0

s2m−1−βif(s) ds

∣∣∣∣ =∣∣∣∣∣ρ−n/2+m−h−δ
∫ ρ

0

(
s

ρ

)−n/2+m−βi−δ

sn/2+mf(s)s−1+δ ds

∣∣∣∣∣ ≤ Cδ ρ
−n/2+m−h−δ

(2.48)

where we used the boundedness of ρn/2+mf(ρ) and the inequality −n/2+m−Re(βi)−δ > 0.
Analogously, remembering that n/2−m+ Re(αi) + δ > 0, we get∣∣∣∣ραi−h

∫ 1

ρ

s2m−1−αif(s) ds

∣∣∣∣ =∣∣∣∣ρ−n/2+m−h−δ
∫ 1

ρ

(ρ
s

)n/2−m+αi+δ

sn/2+mf(s)s−1+δ ds

∣∣∣∣ ≤ Cδ ρ
−n/2+m−h−δ

(2.49)

and finally ∣∣∣∣ραi−h
∫ 1

0

s2m−1−βjf(s) ds

∣∣∣∣ =∣∣∣∣ραi−h
∫ 1

0

s−n/2+m−βj−δsn/2+mf(s)s−1+δ ds

∣∣∣∣ ≤ Cδ ρ
Re(αi)−h ≤ Cδρ

−n/2+m−h−δ .

(2.50)

�

Proposition 2.9. Let µ ∈ [0, µ), and let u be a solution to (2.1); moreover, let us suppose
that ρα1f(ρ) = ρα1Lµ[u] ∈ L1

r(B). Then

(2.51) |u(ρ)| ≤ C‖ρα1Lµ[u]‖1ρ
β1 ;
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moreover, if µ is critical for Lµ, then

(2.52) ‖u‖2 ≤ C‖ρα1Lµ[u]‖1 .

Proof. The proof is similar to the proof of Proposition 2.8. Remembering that 2m − 1 =
n− 1 + α1 + β1, we have∣∣∣∣ρβi ∫ ρ

0

s2m−1−βif(s) ds

∣∣∣∣ =

∣∣∣∣∣ρβ1
∫ ρ

0

(
s

ρ

)β1−βi
sn−1sα1f(s) ds

∣∣∣∣∣ ≤ C‖g‖1ρ
β1 ;(2.53) ∣∣∣∣ραi

∫ 1

ρ

s2m−1−αif(s) ds

∣∣∣∣ =

∣∣∣∣ρβ1 ∫ 1

ρ

(ρ
s

)αi−β1
sn−1sα1f(s) ds

∣∣∣∣ ≤ C‖g‖1ρ
β1 ;(2.54) ∣∣∣∣ραi

∫ 1

0

s2m−1−βjf(s) ds

∣∣∣∣ =

∣∣∣∣ραi

∫ 1

0

sβ1−βjsn−1sα1f(s) ds

∣∣∣∣ ≤ C‖g‖1ρ
αi ≤ C‖g‖1ρ

β1 .(2.55)

From the above relations (2.51) immediately follows. Taking into account that µ is critical
for Lµ iff β1 > −n/2, we see that (2.52) is a consequence of (2.51).

�

3. An auxiliary function

Now we want to study the properties of an auxiliary function, which throughout the rest
of the paper we shall denote by wµ(ρ); this function will be useful in what follows.

We define wµ(ρ) to be the solution to the problem

(3.1)


Lµ[wµ] = 0 in B ,

wµ ∈ Hm
r (B) ,

wµ(1) = · · · = w(m−2)
µ (1) = 0, w(m−1)

µ (1) = (−1)m−1 .

Proposition 3.1. Let µ ∈ [0, µ). Then wµ(ρ) is positive and decreasing.

Proof. Let µ : Pµ(z) has all distinct roots. By (2.3) and (2.14) we easily get that

(3.2) wµ(ρ) =
m∑
i=1

ραi∏
j 6=i

(αj − αi)
,

while, if for a certain µ′ double roots occour, then, as usual, wµ′(ρ) = lim
µ→µ′

wµ(ρ). Moreover,

an elementary verification (see [6]) shows that

(3.3) w0(ρ) =
(1− ρ2)m−1

2m−1(m− 1)!
.

We claim that

if µ is such that wµ ≥ 0 in B, then wµ(ρ) is a decreasing function,

and wµ(ρ) ≥ w0(ρ) .
(3.4)
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Indeed, if we set wµ = w0 + vµ, then vµ is the solution to the problem

(3.5)

(−∆)mvµ =
µ

|x|2m
wµ

vµ ∈ Hm
0,r(B) .

From [14] (see also [4]) we know that, if (−∆)mv ≥ 0 in B and v = 0 on ∂B, then v ≥ 0 in B
and v is radially decreasing. Hence, for any µ such that wµ ≥ 0, we have that wµ = w0 + vµ
is the sum of two positive decreasing functions, so that (3.4) holds true. Therefore, to end
the proof we must show that wµ ≥ 0 for any µ ∈ [0, µ).

Now let I = {µ ∈ [0, µ) : wσ(ρ) ≥ 0 ∀σ ∈ [0, µ∗]}. By its very definition I is an interval,
and I 6= ∅, because 0 ∈ I. We must show that I = [0, µ), and we argue by contradiction.
So, let µ̃ = sup I and let us suppose that µ̃ < µ. By continuity it is obvious that µ̃ ∈ I. To
fix ideas, let us suppose that Pµ̃(z) has distinct roots.

Due to boundary conditions and continuous dependence on the parameter µ, there exists
δ1 > 0 such that wµ(ρ) ≥ 0 for µ ∈ [µ̃, µ̃ + δ1] and ρ ∈ (1 − δ1, 1]. Now let us estimate
wµ(ρ) in the remaining part of the interval, namely (0, 1− δ1]. By (3.2), making explicit the

dependence on µ, we have wµ(ρ) = ρα1(µ)ψµ(ρ), where

(3.6) ψµ(ρ) = c1(µ) + c2(µ)ρα2(µ)−α1(µ) + · · ·+ cm(µ)ραm(µ)−α1(µ)

for suitable ci(µ).
Taking into account (3.4), we know that ψµ̃(ρ) > 0 in (0, 1− δ1]; indeed, being Re(αi(µ)−

α1(µ)) ≥ 0 for any µ ∈ [0, µ) (see Corollary 2.5), a moment’s thought shows that ∃η > 0 :
ψµ̃(ρ) ≥ η in (0, 1− δ1].

By continuity, which we can invoke as Re(αi(µ) − α1(µ)) ≥ 0, there exists a δ2 > 0 such
that ψµ(ρ) ≥ η/2 > 0 in (0, 1− δ1] for any µ ∈ [µ̃, µ̃+ δ2].

Summing up, wµ(ρ) keeps non-negative for µ ∈ [µ̃, µ̃ + δ], where δ = δ1 ∧ δ2, an absurd.
Hence µ̃ = µ. The reasonment is perfectly analogous if double roots occour for µ = µ̃.

�

Remark 11. From the proof of Proposition 3.1 it is clear that there exists γ > 0 such that

(3.7) γ wµ(ρ) ≥ ρα1 , ρ ∈ (0, 1/2) .

Proposition 3.2. Let µ ∈ [0, µ), and let f(ρ) be a measurable, positive and nonincreasing
function on (0, 1). Then there exists C = C(n, µ) > 0 such that

(3.8)

∫ 1

0

ρn−1+α1f(ρ) dρ ≤ C

∫ 1

0

ρn−1wµ(ρ)f(ρ) dρ .
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Proof. By means of (3.7) we get∫ 1

0

ρn−1+α1f(ρ) dρ =

∫ 1/2

0

ρn−1+α1f(ρ) dρ+

∫ 1

1/2

ρn−1+α1f(ρ) dρ ≤∫ 1/2

0

ρn−1+α1f(ρ) dρ+ 2−α1f(1/2)

∫ 1

1/2

ρn−1 dρ =∫ 1/2

0

ρn−1+α1f(ρ) dρ+ (2n − 1)2−α1f(1/2)

∫ 1/2

0

ρn−1 dρ ≤

2n
∫ 1/2

0

ρn−1+α1f(ρ) dρ ≤ 2nγ

∫ 1/2

0

ρn−1wµ(ρ)f(ρ) dρ ≤ 2nγ

∫ 1

0

ρn−1wµ(ρ)f(ρ) dρ .

(3.9)

�

Proposition 3.3. Let µ ∈ [0, µ), and let u ∈ Hm
0,r(B)∩C2m(B \ {0}) be a solution to (2.1),

with f ∈ L2∗′

r (B) such that ρn/2+mf(ρ) is bounded. Then

(3.10)

(∫
B

wµLµ[u]

)2

= ω2
n(u(m)(1))2 .

Proof. Let Ω be a bounded smooth region in Rn with outward normal ν, and let ϕ, ψ ∈
C2m(Ω) such that

(3.11) Dαϕ
∂Ω

= 0 , Dβψ
∂Ω

= 0 , |α| ≤ m− 1, |β| ≤ m− 2 ;

then, by Gauss–Green formula we get∫
Ω

ψ(−∆)mϕ−
∫

Ω

ϕ(−∆)mψ =
∫
∂Ω

(
∇((−∆)m/2−1ψ) · ν

)(
(−∆)m/2ϕ

)
m even;∫

∂Ω

(
(−∆)(m−1)/2ψ

)(
∇((−∆)(m−1)/2ϕ) · ν

)
m odd.

(3.12)

For any ε ∈ (0, 1) let Bε = {x : ε < |x| < 1}. Taking into account (3.1) and (3.12) with
Ω = Bε, ϕ = u and ψ = wµ we get

(3.13)

∫
Bε

wµLµ[u] = (−1)mωnu
(m)(1) + εn−1

2m−1∑
h=0

chu
(h)(ε)w(2m−1−h)

µ (ε) ∀ ε ∈ (0, 1) .

for suitable fixed constants ch.
By (2.14) we know that α1 > −n/2+m, so let us choose δ > 0 such that α1+n/2−m−δ >

0. By Proposition (2.8) we have

(3.14) |u(h)(ε)| ≤ Cε−n/2+m−h−δ

while

(3.15) |w(2m−1−h)
µ (ε)| ≤ Cεα1−2m+1+h .
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Therefore

(3.16) |εn−1

2m−1∑
h=0

chu
(h)(ε)w(2m−1−h)

µ (ε)| ≤ Cεα1+n/2−m−δ → 0 (ε→ 0) .

On the other hand, wµLµ[u] ∈ L1(B), and therefore

(3.17)

∫
Bε

wµLµ[u]→
∫
B

wµLµ[u] (ε→ 0) ,

so that (3.10) follows from (3.13), (3.16) and (3.17). �

4. A Pohozaev identity

The keystone of most of non existence theorems in nonlinear critical problems is the
Pohozaev identity , which is obtained classically by means of multiplication of the equation by
suitable testing expressions and integration by parts. In the present work we shall establish
the following Pohozaev–type result:

Proposition 4.1. Let u ∈ Hm
0,r(B) be a weak solution to

(4.1)

{
Lµ[u] = |u|2∗−2u+ λu in B

Dβu|∂B = 0 for |β| ≤ m− 1

where λ ∈ R. Then, the following identity holds:

(4.2) 2mλ

∫
B

u2 dx = ωn(u(m)(1))2

Remark 12. The identity (4.2) is well-known in the non-singular case, i.e. when µ = 0, under
the hypothesis that the solution u is classical , i.e. u ∈ C2m(B) (see [6] and Theorem 7.27
in [4], where it is proved in general domains Ω). In our case the solution u is no more of
C2m class; to move around this problem, we shall resort to a method which requires weaker
assumptions: namely, we shall compare two admissible variations of the involved functional.

To prove Proposition 4.1 we need the following two lemmas:

Lemma 4.2. Let u ∈ Hm
0,r(B). For any γ ∈ (0, 1) let ϕ̃γ(ρ) : [0, 1] → [0, 1] be a smooth

non-increasing function such that ϕ̃γ(ρ) ≡ 1 in [0, 1 − γ], ϕ̃γ(ρ) ≡ 0 in [1 − γ/2, 1], and let
ϕγ(ρ) = ρ ϕ̃γ(ρ). Finally, let us set σγ,ε(ρ) = ρ+ εϕγ(ρ) and uγ,ε(ρ) = u(σγ,ε(ρ)). Then

lim
γ→0

d

dε

[
ωn
2

∫ 1

0

ρn−1(u(m)
γ,ε (ρ))2 dρ

]
ε=0

=

− n− 2m

2
ωn

∫ 1

0

ρn−1(u(m)(ρ))2 dρ− ωn
2

(u(m)(1))2 .

(4.3)

Proof. See [8], Lemma 4.2. �

Lemma 4.3. Let u ∈ Hm
0,r(B). Then

(4.4) lim
ρ→0

u(ρ)ρn/2−m = 0 .
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Proof. By classical Hardy–Rellich inequalities (see for instance [3], [12]), the functions u(ρ)ρn/2−1/2−m,
u′(ρ)ρn/2+1/2−m belong to L2(0, 1). Hence, if we set

(4.5) ϕ(ρ) = u2(ρ)ρn−2m−1 , ψ(ρ) = ρϕ(ρ) = u2(ρ)ρn−2m

we get that ϕ(ρ), ψ′(ρ) ∈ L1(0, 1). As ϕ(ρ) ∈ L1(0, 1) we have

(4.6) lim inf
ρ→0

ψ(ρ) = lim inf
ρ→0

ρϕ(ρ) = 0 ,

whch implies lim
ρ→0

ψ(ρ) = 0, because ψ(ρ) is an absolutely continuous function. �

Proof of Proposition 4.1.

Let u as in the statement of the proposition; then u is a critical point of the functional
J : Hm

0,r(B)→ R defined by

J [v] =
1

2

∫
B

∣∣Dmv(x)
∣∣2 dx− µ

2

∫
B

v2(x)

|x|2m
dx− λ

2

∫
B

v2(x) dx− 1

2∗

∫
B

|v(x)|2∗ dx

=
ωn
2

∫ 1

0

ρn−1(v(m)(ρ))2 dρ− µ

2
ωn

∫ 1

0

ρn−2m−1v2(ρ) dρ

− λ

2
ωn

∫ 1

0

ρn−1v2(ρ) dρ− 1

2∗

∫ 1

0

ρn−1|v(ρ)|2∗ dρ .

(4.7)

Let uγ,ε ∈ Hm
0,r(B) as in Lemma 4.2. Then

d

dε

[∫ 1

0

ρn−2m−1|uγ,ε(ρ)|2 dρ
]
ε=0

= 2

∫ 1

0

ρn−2m−1u(ρ)u′(ρ)ϕγ(ρ) dρ ;

d

dε

[∫ 1

0

ρn−1u2
γ,ε(ρ) dρ

]
ε=0

= 2

∫ 1

0

ρn−1u(ρ)u′(ρ)ϕγ(ρ) dρ ;

d

dε

[∫ 1

0

ρn−1|uγ,ε(ρ)|2∗ dρ
]
ε=0

= 2∗
∫ 1

0

ρn−1|u(ρ)|2∗−2u(ρ)u′(ρ)ϕγ(ρ) dρ .

(4.8)

Taking into account (4.4), we see that we may integrate by parts in (4.8), getting

lim
γ→0

d

dε

[
−µ

2
ωn

∫ 1

0

ρn−2m−1u2
γ,ε(ρ) dρ

]
ε=0

=
n− 2m

2
µωn

∫ 1

0

ρn−1u2(ρ) dρ ;

lim
γ→0

d

dε

[
−λ

2
ωn

∫ 1

0

ρn−1u2
γ,ε(ρ) dρ

]
ε=0

=
n

2
λωn

∫ 1

0

ρn−1u2(ρ) dρ ;

lim
γ→0

d

dε

[
−ωn

2∗

∫ 1

0

ρn−1|uγ,ε(ρ)|2∗ dρ
]
ε=0

=
n− 2m

2
ωn

∫ 1

0

ρn−1|u(ρ)|2∗ dρ .

(4.9)

Now let us compare two admissible variations for J . Being u a critical point for J , we
know that

d

dε

[
J [uγ,ε]

]
ε=0

= 0 =⇒ lim
γ→0

d

dε

[
J [uγ,ε]

]
ε=0

= 0 ;(4.10)

d

dε

[
J [(1 + ε)u]

]
ε=0

= 0 .(4.11)
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Taking into account (4.7), from (4.3), (4.9) and (4.10) we get

−n− 2m

2
ωn

∫ 1

0

ρn−1(u(m)(ρ))2 dρ− ωn
2

(u(m)(1))2+

n

2
λωn

∫ 1

0

ρn−1u2(ρ) dρ+
n− 2m

2
ωn

∫ 1

0

ρn−1|u(ρ)|2∗ dρ = 0

(4.12)

while from (4.11) we obtain

(4.13) ωn

∫ 1

0

ρn−1(u(m)(ρ))2 dρ− λωn
∫ 1

0

ρn−1u2(ρ) dρ− ωn
∫ 1

0

ρn−1|u(ρ)|2∗ dρ = 0 .

Now the thesis follows by adding to (4.12) the equation (4.13) multiplied by (n/2−m).
�

5. The proof of Theorem 1

If λ < 0, Theorem 1 follows immediately from (4.2), while, if λ = 0, the claim follows by
comparing (3.10) and (4.2) (and indeed problem (1.1) admits no nontrivial solutions for any
λ ≤ 0, whatever µ may be in [0, µ)); hence, for the rest of the section, let λ > 0.

The proof is based upon the following chain of equalities–inequalities, which holds true, if
µ is critical for Lµ, for any u ∈ Hm

0,r(B) weak positive radial solution to (1.1):

(5.1)
λ‖u‖2

2 =
1

2mωn
‖wLµ[u]‖2

1 ≥ C1‖ρα1Lµ[u]‖2
1 ≥ C2‖u‖2

2

(I) (II) (III)

where C1, C2 are strictly positive constants.

Proof of (5.1)-(I).
By standard regularity arguments, u ∈ Hm

0,r(B) ∩C2m(B \ {0}); moreover, by Lemma 4.3

we get that, setting f = u2∗−1 + λu, the function ρn/2+mf(ρ) is bounded. Hence we may use
Proposition 3.3; now (5.1)-(I) follows by comparing (3.10) and (4.2).

Proof of (5.1)-(II).
Being u a radial positive solution to (1.1), it solves

(5.2) (−∆)mu = g := µ
u

|x|2m
+ u2∗−1 + λu u ∈ Hm

0,R(B) ;

the right hand side g in (5.2) is positive, therefore from [14], [4] we know that u is radially
decreasing, and so the same is true for u2∗−1 +λu and for Lµ[u]. Now (5.1)-(II) follows from
Proposition (3.2)

Proof of (5.1)-(III).

The inequality (5.1)-(III) is nothing but (2.52), which holds true as µ is critical for Lµ.
�
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