This paper describes the participation of the UNIBA team in the Named Entity rEcognition and Linking (NEEL) Challenge. We propose a completely unsupervised algorithm able to recognize and link named entities in English tweets. The approach combines the simple Lesk algorithm with information coming from both a distributional semantic model and usage frequency of Wikipedia concepts. The results show encouraging performance.

UNIBA: Exploiting a Distributional Semantic Model for Disambiguating and Linking Entities in Tweets

BASILE, PIERPAOLO;CAPUTO, ANNALINA;SEMERARO, Giovanni;NARDUCCI, FEDELUCIO
2015-01-01

Abstract

This paper describes the participation of the UNIBA team in the Named Entity rEcognition and Linking (NEEL) Challenge. We propose a completely unsupervised algorithm able to recognize and link named entities in English tweets. The approach combines the simple Lesk algorithm with information coming from both a distributional semantic model and usage frequency of Wikipedia concepts. The results show encouraging performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/139546
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact