Direct real-time measurements of the penetration depth during laser micromachining has been demonstrated by developing a novel ablation sensor based on laser diode feedback interferometry. Percussion drilling experiments have been performed by focusing a 120-ps pulsed fiber laser onto metallic targets with different thermal conductivity. In-situ monitoring of the material removal rate was achieved by coaxially aligning the beam probe with the ablating laser. The displacement of the ablation front was revealed with sub-micrometric resolution by analyzing the sawtooth-like induced modulation of the interferometric signal out of the detector system.
Laser self-mixing sensor to monitor in-situ the penetration depth during short pulse laser drilling of metal targets
Ancona A;DABBICCO, Maurizio;LUGARA', Pietro Mario;SCAMARCIO, Gaetano
2011-01-01
Abstract
Direct real-time measurements of the penetration depth during laser micromachining has been demonstrated by developing a novel ablation sensor based on laser diode feedback interferometry. Percussion drilling experiments have been performed by focusing a 120-ps pulsed fiber laser onto metallic targets with different thermal conductivity. In-situ monitoring of the material removal rate was achieved by coaxially aligning the beam probe with the ablating laser. The displacement of the ablation front was revealed with sub-micrometric resolution by analyzing the sawtooth-like induced modulation of the interferometric signal out of the detector system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.