This paper addresses the use of multi-objective optimization techniques for optimal zoning design in the context of handwritten digit recognition. More precisely, the Non-dominant Sorting Genetic Algorithm II (NSGA II) has been considered for the optimization of Voronoi-based zoning methods. In this case both the number of zones and the zone position and shape are optimized in a unique genetic procedure. The experimental results point out the usefulness of multi-objective genetic algorithms for achieving effective zoning topologies for handwritten digit recognition.

Handwritten Digit Recognition by Multi-Objective Optimization of Zoning Methods

IMPEDOVO, Sebastiano;PIRLO, Giuseppe;
2012-01-01

Abstract

This paper addresses the use of multi-objective optimization techniques for optimal zoning design in the context of handwritten digit recognition. More precisely, the Non-dominant Sorting Genetic Algorithm II (NSGA II) has been considered for the optimization of Voronoi-based zoning methods. In this case both the number of zones and the zone position and shape are optimized in a unique genetic procedure. The experimental results point out the usefulness of multi-objective genetic algorithms for achieving effective zoning topologies for handwritten digit recognition.
2012
978-0-7695-4774-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/137012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact