The usage of descriptive data mining methods for predictive purposes is a recent trend in data mining research. It is well motivated by the understandability of learned models, the limitation of the so-called "horizon effect" and by the fact that it is a multi-task solution. In particular, associative classification, whose main idea is to exploit association rules discovery approaches in classification, gathered a lot of attention in recent years. A similar idea is represented by the use of emerging patterns discovery for classification purposes. Emerging Patterns are classes of regularities whose support significantly changes from one class to another and the main idea is to exploit class characterization provided by discovered emerging patterns for class labeling. In this paper we propose and compare two distinct emerging patterns based classification approaches that work in the relational setting. Experiments empirically prove the effectiveness of both approaches and confirm the advantage with respect to associative classification.

Emerging Pattern Based Classification in Relational Data Mining

CECI, MICHELANGELO;APPICE, ANNALISA;MALERBA, Donato
2008

Abstract

The usage of descriptive data mining methods for predictive purposes is a recent trend in data mining research. It is well motivated by the understandability of learned models, the limitation of the so-called "horizon effect" and by the fact that it is a multi-task solution. In particular, associative classification, whose main idea is to exploit association rules discovery approaches in classification, gathered a lot of attention in recent years. A similar idea is represented by the use of emerging patterns discovery for classification purposes. Emerging Patterns are classes of regularities whose support significantly changes from one class to another and the main idea is to exploit class characterization provided by discovered emerging patterns for class labeling. In this paper we propose and compare two distinct emerging patterns based classification approaches that work in the relational setting. Experiments empirically prove the effectiveness of both approaches and confirm the advantage with respect to associative classification.
978-3-540-85653-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/136723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact