Colloidal white emitting nanostructures were successfully fabricated by covalently binding a blue emitting oligofluorene at the surface of silica beads, that incorporate orange luminescent colloidal CdSe@ZnS quantum dots (QDs). White light was achieved by carefully tuning the size of the QDs to complementarily match the emission color of the blue fluorophore and taking into account the delicate balance between the emission of the QDs in the core of the silica beads and the amount of the organic dye bound to the silica surface. The proposed approach is highly versatile as it can be extended to the fabrication of a variety of luminescent hybrid nano-objects, playing with the complementarity of the emission color of the inorganic and organic fluorophores at the nanoscale.
Single white light emitting hybrid nanoarchitectures based on functionalized quantum dots
FANIZZA, ELISABETTA;RAGNI, ROBERTA;Curri M. L;AGOSTIANO, Angela;FARINOLA, Gianluca Maria;
2014-01-01
Abstract
Colloidal white emitting nanostructures were successfully fabricated by covalently binding a blue emitting oligofluorene at the surface of silica beads, that incorporate orange luminescent colloidal CdSe@ZnS quantum dots (QDs). White light was achieved by carefully tuning the size of the QDs to complementarily match the emission color of the blue fluorophore and taking into account the delicate balance between the emission of the QDs in the core of the silica beads and the amount of the organic dye bound to the silica surface. The proposed approach is highly versatile as it can be extended to the fabrication of a variety of luminescent hybrid nano-objects, playing with the complementarity of the emission color of the inorganic and organic fluorophores at the nanoscale.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.