Homoleptic Ir(Fnppy)3 and heteroleptic (Fnppy)2Ir(acac) complexes (n = 3: F3ppy = 2-(39,49,69-trifluorophenyl)pyridine; n = 4: F4ppy = 2-(39,49,59,69-tetrafluorophenyl)pyridine; acac = acetylacetonate) have been synthesized and their spectroscopic properties investigated. The homoleptic complexes exist as two stereoisomers, facial (fac) and meridional (mer), that have been isolated and fully characterized. Their electrochemical and photophysical properties have been studied both in solution and in the solid state and electroluminescent devices have been fabricated. The emissive layers in devices have been obtained mixing the iridium complexes with a PVK [poly(9-vinylcarbazole)] host matrix, in the presence of the electron carrier Bu-PBD [2-(4- biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]. The application of a voltage (5.0–6.5 V) between the electrodes of devices leads to electro-generated blue luminescence which has similar energy to the solution emissions. Interestingly, the stability of the devices made with the homoleptic fluorinated iridium complexes strongly depends on the stereochemistry of these phosphors and high (up to 5.5%) external quantum efficiencies for the fac complexes are measured.

Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices

RAGNI, ROBERTA;BABUDRI, Francesco;FARINOLA, Gianluca Maria;
2006-01-01

Abstract

Homoleptic Ir(Fnppy)3 and heteroleptic (Fnppy)2Ir(acac) complexes (n = 3: F3ppy = 2-(39,49,69-trifluorophenyl)pyridine; n = 4: F4ppy = 2-(39,49,59,69-tetrafluorophenyl)pyridine; acac = acetylacetonate) have been synthesized and their spectroscopic properties investigated. The homoleptic complexes exist as two stereoisomers, facial (fac) and meridional (mer), that have been isolated and fully characterized. Their electrochemical and photophysical properties have been studied both in solution and in the solid state and electroluminescent devices have been fabricated. The emissive layers in devices have been obtained mixing the iridium complexes with a PVK [poly(9-vinylcarbazole)] host matrix, in the presence of the electron carrier Bu-PBD [2-(4- biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]. The application of a voltage (5.0–6.5 V) between the electrodes of devices leads to electro-generated blue luminescence which has similar energy to the solution emissions. Interestingly, the stability of the devices made with the homoleptic fluorinated iridium complexes strongly depends on the stereochemistry of these phosphors and high (up to 5.5%) external quantum efficiencies for the fac complexes are measured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/132153
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 208
  • ???jsp.display-item.citation.isi??? 204
social impact