Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections.

Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections. © Springer-Verlag Berlin Heidelberg 2013.

Predictive regional trees to supplement geo-physical random fields

APPICE, ANNALISA;PRAVILOVIC, SONJA;MALERBA, Donato
2013-01-01

Abstract

Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections. © Springer-Verlag Berlin Heidelberg 2013.
2013
978-3-319-00968-1
Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/131102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact