The microstructure of organogels formed upon the addition of tiny amounts of water to a solution of lecithin in fatty acid esters (viz. isopropylpalmitate and ethyloleate) was investigated by means of molecular self-diffusion measurements. In both systems lecithin and water form disconnected cylindrical reverse micelles. The ternary phase map for the lecithin/water/isopropylpalmitate has been investigated in detail. The organogel exists in a narrow region close to the lecithin - oil binary axis; for higher water content equilibrium between lamellae and reverse micelles is found. Lamellar phase occupies the lecithin-rich region, close to the lecithin corner (with the exception of a small island of hexagonal phase) and coexists with neat water close to the water-lecithin axis. The remaining part of the phase map shows the three-phase coexistence of water, oil, and lamellar phase.
Biocompatible lecithin organogels: microstructure and phase equilibria
Colafemmina G.;Palazzo G.
2005-01-01
Abstract
The microstructure of organogels formed upon the addition of tiny amounts of water to a solution of lecithin in fatty acid esters (viz. isopropylpalmitate and ethyloleate) was investigated by means of molecular self-diffusion measurements. In both systems lecithin and water form disconnected cylindrical reverse micelles. The ternary phase map for the lecithin/water/isopropylpalmitate has been investigated in detail. The organogel exists in a narrow region close to the lecithin - oil binary axis; for higher water content equilibrium between lamellae and reverse micelles is found. Lamellar phase occupies the lecithin-rich region, close to the lecithin corner (with the exception of a small island of hexagonal phase) and coexists with neat water close to the water-lecithin axis. The remaining part of the phase map shows the three-phase coexistence of water, oil, and lamellar phase.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.